
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Information Systems

Empirical Studies to Identify Challenges and
Probe Good Practices in the Adoption of

Scaled Agile Methods in the Field of Vehicle
Dynamics Development of an OEM

Clara Lea Buchholz





FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Information Systems

Empirical Studies to Identify Challenges and Probe
Good Practices in the Adoption of Scaled Agile Methods

in the Field of Vehicle Dynamics Development of an
OEM

Empirische Studien zur Identifizierung von
Herausforderungen und Erprobung bewährter
Praktiken bei der Einführung skalierter agiler

Arbeitsweisen im Bereich der Fahrdynamikentwicklung
eines OEMs

Author: Clara Lea Buchholz
Supervisor: Prof. Dr. Florian Matthes

Advisor: M. Sc. Ömer Uludağ
Date: August 14, 2019





I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, August 14, 2019 Clara Lea Buchholz





Abstract

Since 17 scientists published the Agile Manifesto in 2001, agile projects have been contin-
uously evolving and their success attracted attention. The approach to install agile de-
velopment proposed lean processes, the continuous improving of the product, and more
flexibility. Even though in the first place, the term agile is just a set of 12 principles and
four values. With these in mind, various methodologies, practices, and frameworks were
introduced and adapted in the last decades. With their usage, new concerns arose. Agile
development was not only installed in individual and co-located teams for which it was
initially designed, but was also adapted in large organizations. Therefore, the transforma-
tion from traditional to agile development was experienced as more challenging in large
than in small organizations. Additional concerns came up in large-scale agile develop-
ment and were addressed by novel practices, which required examination. Research in
this domain is still scarce, while gaining relevance, especially within transformations. In
particular, the demand for case studies increases. Therefore, we investigated the individ-
ual adoption of agile development in a large department producing software in the field
of vehicle dynamics development. Additionally, we analyzed the concerns in the differ-
ent adoption phases. Overall, we reinvestigated 55 concerns from previous literature and
found 27 new concerns. The recurring concerns were addressed by several good practices.
To document these probed good practices in a structured manner, the large-scale agile
development pattern language developed by our chair was used. 17 pattern candidates
are demonstrated in this thesis, divided into Principles, Coordination Patterns, Method-
ology Patterns, Viewpoint Patterns, and Anti-Patterns. To fulfill our empirical research
approach, we conducted 14 interviews with scrum masters, product owners, developers,
and managers and observed their work for five months. We were able to analyze not only
the temporal occurrence, but also the role-specific experiences with the documented con-
cerns and good practices as well as relationships between them.

vii



viii



Contents

Abstract vii

Outline of the Thesis xi

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Foundations 7
2.1. Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Agile Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1. Principles and Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2. Scrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3. Large-Scale Agile Development . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2. Concerns in Large-Scaled Agile Development . . . . . . . . . . . . . 13
2.3.3. Success Factors in Large-Scaled Agile Development . . . . . . . . . . 14
2.3.4. Scaling Agile Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4. Large-Scale Agile Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. Related Work 19

4. Case Study 27
4.1. Case Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1. Shadowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2. Feedback Talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3. Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.4. Provided Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2. Case Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5. Observing and Identifying Recurring Concerns and Good Practices 41
5.1. Recurring Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2. Good Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1. Create T-Shaped People . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ix



Contents

5.2.2. Community of Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.3. Empowered Community of Practice . . . . . . . . . . . . . . . . . . . 60
5.2.4. Travelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.5. Synchronized Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.6. Don’t Combine Developers from Different Organizational Units in

One Development Team . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6. Discussion 69
6.1. Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7. Conclusion 77
7.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A. Appendix 79
A.1. Interview Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.1.1. General Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.1.2. Questionnaire for Manager . . . . . . . . . . . . . . . . . . . . . . . . 81
A.1.3. Questionnaire for Product Owner, Scrum Master and Developer . . 82

A.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B. Appendix 87
B.1. Documentation of Identified Pattern Candidates . . . . . . . . . . . . . . . . 87

B.1.1. Backlog Grooming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.1.2. Piloting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.1.3. Share the Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B.1.4. Come to Our Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.1.5. Shadowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.1.6. Share a Mailbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.1.7. Radar Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.1.8. Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
B.1.9. Project Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.1.10. Starfish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.1.11. Burndown Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Bibliography 109

x



Contents

Outline of the Thesis
CHAPTER 1: INTRODUCTION

The first chapter offers the motivation of this thesis to the reader as well as explains re-
search objectives, which include three research questions and how those will be answered.

CHAPTER 2: FOUNDATIONS

Divided into four parts, this chapter explains the foundation of this thesis. It comprises
first announcing patterns, second introducing agile development at all, followed by large-
scaled agile development and last stating the transformation from traditional development
to large-scale agile development.

CHAPTER 3: RELATED WORK

The analysis of related literature regarding concerns, success factors and patterns in large-
scale agile development and during transformations from traditional to large-scale agile
development is presented in this chapter.

CHAPTER 4: CASE STUDY

This chapter explains design and description of the case study. Furthermore, the proce-
dure of the conducted transformation is demonstrated and results about applied scaling
practices are presented.

CHAPTER 5: OBSERVING AND IDENTIFYING RECURRING CONCERNS AND GOOD

PRACTICES

In this chapter all relevant results are summarized. First, the recurring concerns are listed
and explained. Furthermore, used good practices are clarified and registered as pattern
candidates.

CHAPTER 6: DISCUSSION

This chapter discusses the key findings and limitations of this thesis.

CHAPTER 7: CONCLUSION

The last chapter consists of a summary of this thesis and a possible outlook for future work.

xi





1. Introduction

This first chapter includes the subject matter which motivated us for this thesis. Next, re-
search objectives with our three research questions are described: First how the large-scale
agile transformation takes place at the case organization, second what concerns within
large-scale agile transformation at the Original Equipment Manufacturer (OEM) arose, and
third what good practices were used to address the observed concerns within large-scale
agile transformation at the OEM. Moreover, our research approach explains how we con-
ducted our empirical study.

1.1. Motivation

Agile development has evolved, since the publication of the Agile Manifesto [9] in 2001
with its 12 principles of agile software and four agile values. The manifesto defined a
new way of developing software with focus on individuals, customers as well as develop-
ers, their interaction, their products, and flexibility. Nevertheless, existing procedures are
still appreciated [9]. From these values and principles several practices and methodolo-
gies arose [22]. Although, original agile methods were first designed for small, individual,
and co-located teams [22], large departments have also shown interest in trying agility in
a large-scale development [49]. Traditional software development methods have some-
times failed in quickly changing business environments, because of their inflexibility [49].
Agility proposed more flexibility [34] through a new mindset [18]. While adopting agility
in larger departments new challenges arose [18, 35, 49, 67]. Nevertheless, organizations
requested to explore new potential in software development. A higher demand for coor-
dination [57] as well as a challenging collaboration with non-agile departments [27] were
expectable new concerns. As the domain gained relevance, more research was done [23],
but general valid academic work is still limited, especially regarding large-scale agile de-
velopment [1]. Special research about the concerns coming up during large-scale agile
transformations was done but is rare [21, 67]. Additional experience reports about ways
to address challenges encountered in large-scale agile development are also scarce [17,66].
After theoretical research was done, the demand for practical research is increasing. This
is the reason why this thesis aims to analyze the transformation phase from a traditional
matrix organization (skill-oriented) to a cross-functional large-scale agile organizational
structure. Additionally, other concerns and modes in which they were addressed during
the transformation will be analyzed. The collection of data was done by observing the
development department of vehicle dynamics and by conducting 14 interviews with dif-

1



1. Introduction

ferent stakeholders from the department. Also, provided data was taken into account.
During empirical research of this thesis, several good practices were investigated at the
case organization. The intention was to help other departments and external organizations
in the adoption of scaled agile methods with experiences from the case study organization
as well as adding value to academic research with a new case study.

1.2. Research Objectives

For this work empirical studies have been conducted, to identify concerns and probe good
practices during the adoption of scaled agile methods in a specific case organization. To
cluster the investigated experiences, three research questions have been defined:

Research Question 1: How does the large-scale agile transformation take place
at the case organization?

The transformation of a software development department of an OEM in the field of ve-
hicle dynamics development from utilizing traditional software development methods to
employing scaled agile development methods took place in the observed time. The first
research question intends to examine how this transformation was implemented at the
case organization, what framework was used, and how the large-scale agile approach was
conducted. The investigation was prepared by studying existing literature of other case
studies during the transformation of organizations and conducted by both, observing the
case organization and performing interviews.

Research Question 2: What are concerns within the large-scale agile transfor-
mation at the OEM?

The second research question aims to find out what concerns arose during the transition to
large-scale agile development. With respect to concerns which already have been analyzed
in literature, different stakeholders at the case organization were requested to share their
experiences with concerns in their daily business. Additionally, agile teams were observed
during their meetings to identify more concerns.

Research Question 3: What are good practices to address the observed con-
cerns within the large-scale agile transformation at the OEM?

Since the first research question explained how the transformation took place and the sec-
ond research question led to issues during the transformation, the last research question
seeks to find out how to solve these issues. Based on the results of the first and second re-
search question we fulfilled our further data collection (see Section 4.1). We identified dif-
ferent practices as good practices and documented them as pattern candidates. They were
used in agile teams to shape agile development. The pattern candidates were clustered in

2



1.3. Research Approach

a pattern catalog to be used for scientific reasons and by other organizations undergoing
the same transformation. Patterns as well as pattern candidates will be explained in detail
in Section 2.1.

1.3. Research Approach

This thesis aims to answer the three research questions explained in Section 1.2. According
to Robson [53] four different purposes for research exist: examination, description, expla-
nation, and improvement. Our research purposes to fulfill all four: first we explore the
current state of the art at the case organization, second we describe the situation, third
we try to find explanations and links for the arising concerns, and fourth we improve the
situation by probing good practices. This thesis was structured according to the paradigm
of design science by Hevner et al. [33] (see Figure 1.1). Mentioned scientists summarized
seven suggestions on how to conduct a design-science research guideline (see Table 1.1).

Guideline Description
Guideline 1:
Design as an Artifact

Design-science research must produce a viable arti-
fact in the form of a construct, a model, a method, or
an instantiation.

Guideline 2:
Problem Relevance

The objective of design-science research is to develop
technology-based solutions to important and rele-
vant business problems.

Guideline 3:
Design Evaluation

The utility, quality, and efficacy of a design artifact
must be rigorously demonstrated via well-executed
evaluation methods.

Guideline 4:
Research Contributions

Effective design-science research must provide clear
and verifiable contributions in the areas of the design
artifact, design foundations, and/or design method-
ologies.

Guideline 5:
Research Rigor

Design-science research relies upon the application of
rigorous methods in both the construction and eval-
uation of the design artifact.

Guideline 6:
Design as a Search Process

The search for an effective artifact requires utilizing
available means to reach desired ends while satisfy-
ing laws in the problem environment.

Guideline 7:
Communication of Research

Design-science research must be presented effectively
both to technology-oriented as well as management-
oriented audiences.

Table 1.1.: Design-Science Research Guidelines by Hevner et al. [33]

3



1. Introduction

We satisfy the guidelines in the following way:

1. "Design as an Artifact" [33]: The artifacts developed by this thesis are three main scal-
ing practices (see Chapter 4.2), new findings on concerns (see Chapter 5.1), as well as
the catalog of pattern candidates found at the case organization (see Chapter 5.2 and
Appendix B). Our results will be used for the Large-Scale Agile Pattern Language of
the chair for software engineering for business information systems (cf. [65]).

2. "Problem Relevance" [33]: The objectives have been explicated in Section 1.2: Focused
on the process of transformation concerns, success factors, and good practices have
been discovered and investigated.

3. "Design Evaluation" [33]: The design evaluation can be found in Section 4.1: The case
study design was oriented towards Lethbridge et al. [40]. Especially data collection
techniques by Lethbridge et al. [40] were applied. Said scientists clustered data col-
lection for software engineering in three degrees of human intervention: first direct
involvement of stakeholders, second indirect involvement of stakeholders, and third
study of work artifacts only. The first and third degree were used for this thesis.

4. "Research Contributions" [33]: The design artifact (see first item), the foundation (see
Chapter 2), and the methodology (explained in this chapter and Chapter 4.1) sum-
marize the contribution of this work, which is merged in Section 6.1 to present the
key findings.

5. "Research Rigor" [33]: We aimed the rigor conduction of the artifacts by demonstrat-
ing the realization of the "behavioral theories" [33] (see related work in Chapter 3)
and "empirical work" [33] (see our case in Chapter 4 as well as our findings on con-
cerns and pattern candidates in 5).

6. "Design as a Search Process" [33]: The iterative process of observing the case organi-
zation and using relevant literature formed the search process of our data.

7. "Communication of Research" [33]: As this thesis was conducted with a partner com-
pany, the last guideline is as follows satisfied: The deliverable conducted through
this work was presented to the scientific (technology-oriented) chair of Software
Engineering for Business Information Systems in the same way as to management-
oriented and technology-oriented stakeholders at the case organization.

As Figure 1.1 illustrates, we use the case organization as environment (see Chapter 4) and
on the other hand, our literature research (see Chapter 2 about the foundations of this
thesis and Chapter 3 about related work) for knowledge base. As already Flyvbjerg [26]
discussed, to demonstrate theoretical knowledge a case study can be helpful and spend
generalizability if linked to theoretical knowledge. This is why this thesis conducts a study

4



1.3. Research Approach

People
Scrum masters, product
owners, developers and 

managers

Organization
Automotive manufacturer

(department for vehicle
dynamics development)

producing software

Technology
Adopting individual  

scaled agile practices

Foundations

Theories on patterns

Theories on agile 
development, large-scale

agile development

Theories on recurring
concerns

Theories on large-scale agile 
transformations

Data collection
Observation and interviews

                   

    
               

         

            

          
    
     
       
       
       
       
      
        
        
          
            
               

       

          
    
        
             

         

          
    
     
       
    
              
       
       
       
      
        
          
            
               

                 

          
    
     
       
       
       
       
      
            
            
                
               

           

          
    
     

        

  

        

  

        

 

 

        

 

 

        

 

 

               

 

 
               
 

                

 

 

    
 

 

Development
Large-Scale Agile Development 

Pattern Language

RefineAssess

Business 
Needs

Applicable
Knowledge

Environment Design Science Research Knowledge Base

Application in the
Appropriate Environment

Additions to the
Knowledge Base

Relevance Rigor

Figure 1.1.: Design-Science approach of this thesis according to Hevner et al. [33]

to identify concerns, probe good practices from literature in practice, and find new ones. A
qualitative study with semi-structured interviews and unstructured interviews according
to Runeson and Höst [55] has been performed with different stakeholders at the case or-
ganization to explore the current state of the organization and get detailed insights in the
personal experience of different associates. Detailed information about these interviews at
the case organization and the applied data collection techniques by Lethbridge et al. [40]
can be found in Section 4.1.

The next chapter lists required terms and concepts regarding the subject matter, whereas
Chapter 3 introduces related scientific work. Chapter 4 offers an overview on design and
description of the case study as well as the results regarding the first research question
(Research Question 1: How does the large-scale agile transformation take place at the case orga-
nization?). Chapter 5 includes all relevant results regarding the second and third research
question (Research Question 2: What are concerns within the large-scale agile transformation
at the OEM?; Research Question 3: What are good practices to address the observed concerns
within the large-scale agile transformation at the OEM?). Findings about concerns as well as
good practices are presented and explained. The sixth chapter discusses the key findings
and limits of this thesis while the seventh summarizes our research.

5



1. Introduction

6



2. Foundations

This chapter clarifies the relevant terms and concepts our thesis deals with. First, patterns
are introduced, which are the deliverable of this case study. As agile development is the
base of this thesis, in the following sections a definition of agile development methods and
the agile framework Scrum will be given. Afterwards, scaled agile development methods
will be defined, their need will be analyzed, and special concerns will be demonstrated.
Third and fourth, success factors and common frameworks to address the concerns and
benefits from the success factors in scaled agile development will be documented. After
understanding scaled agile development methods, the last part of this chapter explains
how they can be adopted.

2.1. Patterns

While some decisions in software engineering are matchless, others provide solutions for
concerns which are not unique, but recurring. These can be written down as patterns
(cf. [17, 28]). The use of patterns can save time and energy for unique problems [8], es-
pecially in large-scale [10], and is appreciated by scientists, engineers, and managers [12].
Patterns can be used to describe different complex things according to the Alexandrian
Form [3]. Said scientist outlined patterns as instructions for "a relation between a certain
context, a problem, and a solution" [3]. Many others referenced to the Alexandrian Form in
their explanations of patterns, for example Coplien [16], the Gang of Four [28], and Well-
hausen and Fiesser [72]. Main element of patterns is a solution of concerns in a specified
context [28]. As Riehle [52] explained, patterns can vary in their granularity and presenta-
tion.

Different ways to document patterns exist, and Harrison [31] structured them into several
steps with various ways to go through. Important for him was the core idea including
a detailed explanation, consequences, and forces that guide to the solution [31], all easy
to understand for the target audience [31]. Patterns can be named differently, for exam-
ple after a fitting metaphor or the solution they provide [42]. To identify a pattern and to
avoid misunderstandings an identifier can be used [66]. Wellhauser and Fiesser [72] sum-
marized five related main sections which can be expanded to more: "Context, Problem,
Forces, Solution, [and] Consequences" [72]. To simplify the writing of patterns another
running order can be used. Said scientists recommended to first imagine the solution,
second the description of the problem, which is followed by the consequences, then the

7



2. Foundations

forces, and last the context [72]. As summary of a pattern provides a short overview and
easier understanding [42].

Patterns can be categorized into different types. Relevant for this thesis are Principles,
Coordination Patterns, Methodology Patterns, Viewpoint Patterns, and Anti-Patterns ac-
cording to the large-scale agile pattern language (see the conceptual model in Figure 2.1)
by Uludağ et al. [66]:

• Principles are "enduring and general guidelines that address given concerns by pro-
viding a common direction for action" [66].

• Coordination Patterns (CO-Pattern) state instruments used to address recurring con-
cerns.

• Methodology Patterns (M-Pattern) represent clear processes that help to solve aris-
ing concerns.

• Viewpoint Patterns (V-Pattern) document visualizations that foster solving concerns.

• Anti-Patterns are pattern that should be avoided, because they picture possible faults.
In their description alternative solutions are presented.

CO-Pattern V-Pattern

type
data collection

M-Pattern

LSAD Pattern

identifier
name
alias
summary
example
context
problem
forces
solution
variants
known uses
consequences
other standards

Concern

identifier
name
category
scaling level

Principle

identifier
name
alias
summary
type
binding nature
example
context
problem
forces
variants
known uses
consequences
other standards

LSAD Anti-Pattern

identifier
name
alias
summary
example
context
problem
forces
general form
consequences
revised solution
other standards

Stakeholder

identifier
name
alias

see also
* *

see also
* *

see also

*

*

see also

*

*

see also

*

*

is addressed by

*

*
is addressed by
*

*is addressed by

*

*

has 
*

*

Figure 2.1.: "Conceptual model of the large-scale agile development
pattern language" by Uludağ et al. [66]

8



2.2. Agile Development

In accordance with Uludağ et al. [66] every element in their pattern language (see Figure
2.1) has an identifier as well as a name. Stakeholders, principles, large-scale agile develop-
ment patterns, and anti-patterns additional store aliases. For principles, large-scale agile
development patterns, as well as anti-patterns a short summary concludes the solution. The
example outlines a possible use, the context illustrates a situation in which the practice can
be used, and the problem demonstrates the problem itself. Forces describe difficulties dur-
ing the solving of the concern and additional consequences regarding benefits and liabilities
are listed [66]. Variants and relations (see other) to other elements of the large-scale agile
development pattern language are documented, if existing [66]. As the known use in this
thesis is always the same, this section is redundant for us.

According to Coplien [16], every documented pattern must recur not less than three times
as validation. As this thesis is based on the empirical study which was conducted at a
specific organization, the rule of three cannot be met. Therefore, pattern candidates instead
of patterns are documented in Chapter 5.

2.2. Agile Development

Previously, the explanation of patterns provided general information about their use in
software engineering. The next section outlines principles and values of agile develop-
ment. Furthermore, the framework Scrum will be explained, as application area for agile
development.

2.2.1. Principles and Values

In software development different work methods are used: sequential, iterative or ag-
ile models. The first two are referred to as traditional software lifecycle models [6]. The
sequential models are for example the Waterfall Model or the V-Model, while iterative
models are the Spiral Model, the V-Model XT, and others (cf. [11]). The third category are
lean agile models, for example Scrum, Kanban, and Extreme Programming (cf. [6, 11]). As
traditional software development methods tend to fail sometimes in a quickly changing
business environment [49], whereas agility and flexibility are more important these days,
agile development methods offer alternative solutions [34]. Furthermore, agile software
development methods overall have gained more relevance in the last decades [22].

Agile software development comprises more than just work methods. It is a development
philosophy [48]. The agile mindset started with the Agile Manifesto in 2001: 12 princi-
ples of agile software and four agile values were defined and published [74]. The Agile
Manifesto aimed to "allow software teams to work quickly and respond to change" [74]. It
includes the following 12 principles [9]:

9



2. Foundations

• "Our highest priority is to satisfy the customer through early continuous delivery of
valuable software."

• "Welcome changing requirements, even late in development. Agile processes harness
change for the customers competitive advantage."

• "Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale."

• "Business people and developers must work together daily throughout the project."

• "Build projects around motivated individuals. Give them the environment and sup-
port they need, and trust them to get the job done."

• "The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation."

• "Working software is the primary measure of progress."

• "Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely."

• "Continuous attention to technical excellence and good design enhances agility."

• "Simplicity - the art of maximizing the amount of work not done - is essential."

• "The best architectures, requirements, and designs emerge from self-organizing teams."

• "At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly."

Additionally, mentioned scientists specified the following four values [9]:

1. "Individuals and interactions over processes and tools."

2. "Working software over comprehensive documentation."

3. "Customer collaboration over contract negotiation."

4. "Responding to change over following a plan."

Software developers should pursue to develop an increment of high benefit to their client
[9]. Agile software development techniques can help them as simple tools in their process-
ing [74]. The popular framework Scrum provides several techniques [61] and is explained
in the next section.

10



2.2. Agile Development

2.2.2. Scrum

As written before, agile frameworks offer different techniques to work with. One of the
most popular is the Scrum framework. It does not instruct how software is developed, but
provides processes to develop and to deal with change [51]. The focus is on well-regulated
teamwork instead of techniques. The team itself can select useful techniques [51]. In center
of this teamwork are three main roles, three artifacts, and iterations (so-called sprints) with
four meetings explained by Schwaber and Beedle in the "Agile Software Development with
Scrum" [60] and summarized in the following subsections.

Roles

Scrum provides three roles [60, 61]:

1. The Product Owner defines the product and is responsible for the increment.

2. The Scrum Master is responsible for the process and resolves impediments.

3. The Development Team realizes the product increment. Wintersteiger [75] explained
that there are three important characteristics for development teams:

a) Self-organized: There is a clearly defined goal and the team works together to
succeed.

b) Skill-oriented: All needed competencies to achieve the goal are available in the
team.

c) Responsible: The team is collective responsible for the success or failure of the
project.

Artifacts

Scrum is using three artifacts [60, 61]:

1. The Product backlog is a list of requirements for the whole product. It is a collection
of items (re)prioritized by the product owner.

2. The Sprint backlog is a list of requirements and tasks for one iteration (sprint).

3. The Potentially Shippable Product Increment (PSPI) is a release which is reviewed
with the product owner and contains the deliverables of the current sprint.

11



2. Foundations

Figure 2.2.: Scrum Framework [61]

Meetings in a Sprint

First the project is planned in a project kickoff meeting to create and prioritize the product
backlog. One project contains several sprints. Sprints are increments in which one PSPI is
produced by a development team. The length of a sprint is variable and can be scheduled
individually. Usually a sprint lasts between one and four weeks. Every sprint starts with a
sprint planning meeting to create the sprint backlog. During the sprint, every day a stand-
up meeting takes place called daily scrum meeting. The members of the development
team share their status, impediments, and promises for the next day. Every sprint ends
with a sprint review to demonstrate the realized backlog items to their product owner
and stakeholders. The acceptance criteria (conditions that a software product must satisfy
to be accepted by a stakeholder) for every single task are checked and after fulfilling all,
the tasks and finally the sprint is closed. After every sprint the team members meet with
their scrum master to inspect the previous sprint and plan improvements in their working
style for the next sprint in a sprint retrospective (cf. [51, 60, 61], see also Figure 2.2).

12



2.3. Large-Scale Agile Development

2.3. Large-Scale Agile Development

The demand for agile development occurred not only in individual teams, but also in
larger organizations. To outline their use of agility, the first part of this section defines
large-scale agile development. The following explains arising concerns and success fac-
tors in large-scale agile development. Lastly, we provide an overview about frameworks
especially for scaling agile development.

2.3.1. Definition

Large-scale agile development is the use of agile methodologies in several teams of one
organization regarding one product [19]. Agile methods, like Scrum, were initially con-
structed for small, individual, and co-located teams, therefore, new concerns came up
when used in large IT organizations [48]. Small-scale projects are performed by one team,
large-scale by two to nine teams, and very large-scale projects by more than 10 teams [5,19].
The complexity of agile development increases with the size of the organization [23].
Therefore, large-scaling gained relevance fast and the need for specific solutions esca-
lated [21]. Thus, scaled agile development methods were developed in different orga-
nizations and different forms [22].

2.3.2. Concerns in Large-Scaled Agile Development

We aim to discover concerns which arose at the case organization. Therefore, known con-
cerns in large-scaled agile development will be explained.

Paasivaara [46] discovered that the cooperation between teams which still worked with
traditional methods and agile teams can lead to a concern. Such situations appear more
often in large-scale agile development [46]. Furthermore, others identified the interac-
tion between agile and non agile teams as concern in scaled agile development (cf. [58]).
Scheerer et al. [58] mentioned the coordination in large-scale agile development in general,
not only between agile and non agile teams, as more important. Abrar et al. [2] identified
the influence of agile work to management as further concern. The agile development in-
fluenced the processes, consequently a loss of calculable project time occurred. This was
experienced as exhausting for developers [2].

More comprehensive, in 2016 Dikert et al. [18] reported 35 challenges clustered into nine
categories found through a systematic literature review. Later, Uludağ et al. [67] identified
and listed 79 challenges assigned to 11 categories in 2018, with the aim to refine the list
by Dikert et al. [18] with more information. Therefore, stated scientists outlined insightful
which stakeholder is related to which concern and where those were found. In 2019, Ulu-
dağ and Matthes [70] extended this list after conducting and analyzing interviews with
industry experts through empirical research. More about known concerns itself can be

13



2. Foundations

found in Chapter 3, where a detailed view about named scientific activities is given. This
thesis aims to demonstrate found concerns by their occurrence in the case organization,
and if new concerns are observed, to add them to the list.

2.3.3. Success Factors in Large-Scaled Agile Development

To get a complete overview also the known success factors have to be explained. Dikert
et al. [18] found 29 success factors especially during large-scale agile transformation and
clustered them into 11 categories [18] (listed by most frequent identified):

1. "Choosing and customizing the agile approach
2. "Mindset and alignment"
3. "Management support"
4. "Training and coaching"
5. "Piloting"
6. "Team autonomy"
7. "Requirements management"
8. "Commitment to change"
9. "Leadership"

10. "Communication and transparency"
11. "Engaging people"

In all those categories we can find factors, which were identified as success factor in the
observations by Dikert et al. [18]. For example for category 1: "Choosing and customizing
the agile approach" Dikert et al. [18] called "Customizing the agile approach carefully [,]
Conform to a single approach [,] Map to old way of working to ease adaption [, and] Keep
it simple" [18] as success factors.

Kalenda et al. [35] also identified different success factors, first during a literature review,
and clustered them in a different scheme [35]:

1. "Acquire knowledge"
2. "United view on values and practices"
3. "Tools and Infrastructure"
4. "Solid engineering practices"
5. "Careful transformation"
6. "Teamwork support"
7. "Executive sponsorship"

14



2.3. Large-Scale Agile Development

Afterwards, Kalenda et al. [35] performed an empirical study and limited their list to four
main success factors based on their study. "United view on values and practices" [35] (see
Item 2) and "executive sponsorship" [35] (see Item 7) have already been found before and
were now demonstrated. Additionally, they found "company culture and prior agile and
lean experience" [35] as two new success factors.

The studies by Dikert et al. [18] and Kalenda et al. [35] differed in some points. The four
final success factors by Kalenda et al. [35] can be found in slightly different versions in the
list by Dikert et al. [18] as shown in Table 2.1. The table shows relations between both, but
not similarities. Especially "company culture" [35] is not easy to match. Dikert et al. [18]
solved equal concerns with the category "Mindset and Alignment" [18]. Furthermore, they
analyzed "Choosing and customizing the agile approach" [18] (see Item 1), as most recur-
ring in their studies, while Kalenda et al. [35] did not mentioned this one at all.

Dikert et al. [18] Kalenda et al. [35]
United view on values and practices Mindset and Alignment
Executive Sponsorship Management support
Company culture (Mindset and Alignment)
Prior agile and lean experience Piloting

Table 2.1.: Relations between the categories of success factors by
Kalenda et al. [35] and Dikert et al. [18]

Larman and Vodde [38] guided their reader through the scaling of agile development in
their book, pointing to a various range of success factors. Most of them have in common
that they were not only regarding the content, but also the mindset. They referred to the
fulfillment of the agile mindset, e.g. during their explanation about Communities of Prac-
tice [38], which were also called as a success factor by Paasivaara and Lassenius [47]. Ad-
ditionally, the importance of an open and passionate community of participants for Com-
munities of Practice was recognized [47]. Paasivaara and Lassenius [47] also highlighted
to live the agile mindset. More precisely, to not just change the name of a community or
group, but also the functionality, structure, and working of a community for being agile
successful (cf. [38]).

As outlined in Section 2.1 common solutions can be illustrated as patterns which represent
good practices to address concerns [16]. Uludağ et al. [66] identified some pattern for their
found concerns and categorized them in the previously explained structure of Principles,
Coordination Patterns, Methodology Patterns, Viewpoint Patterns, and Anti-Patterns.

15



2. Foundations

2.3.4. Scaling Agile Frameworks

Different frameworks can help to scale agile development and solve upcoming concerns.
Some are just loose suggestions, others contain strict regulations. A short summary about
three frameworks extending the previously explained Scrum framework for the large-scale
agile development follows: Large-Scale Scrum, Scrum@Scale, and Scaled Agile Frame-
work.

In 2005 Large-Scale Scrum (LeSS) was adopted first, descriptions of the framework fol-
lowed in 2009 [38]. The LeSS framework scales the use of Scrum to more teams. Devel-
opment teams are called Feature Teams in LeSS, because of their characteristics [38]. All
Feature Teams share "a single product backlog, the same definition of done [,] synchro-
nized [s]prints to a potentially shippable product after each sprint, and a single product
owner" [48], moreover, they have common meetings: sprint planning, review, and retro-
spective are conducted together with all Feature Teams. If needed, Feature Teams can add
individual meetings without other Feature Teams [38]. LeSS was designed for up to eight
individual teams. For more teams LeSS Huge is recommended [38], which is an additional
extension.

Scrum@Scale coordinates the use of Scrum to more than one Scrum team. A set of teams
working on the same product is called a Scrum of Scrums (SoS). Depending on the size
of the organization, also a Scrum of Scrums of Scrums can be installed from a crowd of
SoS. Scrum@Scale divides a Scrum Master Cycle (responsible for the "how") and a Product
Owner Cycle (responsible for the "what") [62].
The Scrum Master Cycle: Additional to the roles and meetings in Scrum, the Scrum@Scale
framework provides the role of a Scrum of Scrum Master and a Scaled Daily Scrum which
is a daily scrum meeting with representatives from every team in the SoS (cf. [62]).
The Product Owner Cycle: The Product Owner Team includes all product owner who are
responsible to prioritize and generate tasks for one common backlog. Every SoS has its
own Product Owner Team. Additional to the roles in Scrum, the Scrum@Scale framework
provides the role of a Chief Product Owner, who has the scaled responsibilities of a regular
product owner [62].
The Scrum Master Cycle and the Product Owner Cycle interact with each other. They meet
on the "Team-Level Process" [62] as well as regarding the product and its release [62].

The Scaled Agile Framework (SAFe) scales agile practices different. SAFe divides the de-
velopment in different levels: portfolio, large solution, program, and team. First the team
level includes activities, processes, events, and roles which take place for the team. While
second the program level includes roles and activities regarding the Agile Release Train
(ongoing team of agile software development member working together in a train on an
ongoing program). The third one is the large solution level, where large and complex so-
lutions are constructed with the required roles, artifacts, and processes. The last one is

16



2.4. Large-Scale Agile Transformation

the portfolio level covering principles, practices, and roles to the set of development value
streams. The foundation of the SAFe are principles and values, strengthening the lean-
agile mindset [39].

LeSS, Scrum@Scale, and SAFe are just three frameworks for scaling agile development
which were picked because of their close relation to the Scrum framework. Moreover, all
three were designed for scaling on the same level, as needed for the case organization, and
LeSS as well as SAFe were described as popular by Uludağ et al. [69]. Many others exist,
e.g. the Disciplined Agile Delivery which combines techniques of the Extreme Program-
ming, Unified Process, Kanban, and Agile Modeling to expand Scrum [4], and the Nexus
framework by Schwaber [59] (signee of the Agile Manifesto in 2001). The latter one ex-
tends the Scrum framework to scale it with an additional Nexus sprint backlog, advanced
meetings, an integrated increment, and more, but is limited to nine teams [59].

2.4. Large-Scale Agile Transformation

The transformation of an organization from traditional to agile software development is
a concern on its own. Fuchs and Hess [27] recommended that "a large-scale agile trans-
formation can be interpreted as an episodic, socio-technical change" [27]. The adoption of
agile development is more than the adoption of a set of agile practices. Most important is
the mindset change of all involved employees and their stakeholders, independent of the
applied framework [24]. To avoid that only "old wine in new bottles" [41] is served, which
Hilkka et al. [41] implied, the promotion of the agile mindset is important [35].

As Papadopoulos [49] mentioned, the adoption of an agile framework can lead to an im-
provement in quality, flexibility, and employee as well as customer satisfaction, in compar-
ison to development teams continuously working according to traditional development
methods. Furthermore, he recognized that the time and energy consuming adoption, es-
pecially in large organizations, is difficult [49]. Because with an increase in organizational
size an increase in complexity follows [23]. Svensson and Höst [63] revealed the com-
plexity of the initial phase of agile development. The side effects beyond the involved
developer are immense to management and stakeholders [63]. Direct support by man-
agement simplifies transformations, however is not always provided. Consequently, the
involvement of the management must be promoted [63] to take their fears and benefit from
their support [36]. Also, all other stakeholders should be convinced to support the agile
transformation [18].

Without being able to reform the mindset agile transformations do not succeed and this
mindset change requires enough time. On the other hand, during an adoption, the enthu-
siasm decreases if the developers experience no success for a long time. Consequently, it is
important to find the right balance in time management [35]. To probe the environment pi-

17



2. Foundations

Incremental
Change

Incremental
Change

Incremental
Change

Radical
Change

Radical
Change

Radical
Change Barriers of

Change

Barriers of
Change

Barriers of
Change

2. Agile Phase

3. Agile Phase

1. Agile Phase

Before Agile Time

Organizational 
Agility

Figure 2.3.: "Large-Scale Agile Transformation Process as Episodic Change" by Fuchs and
Hess [27]

loting can save cost and time, while gaining experience [18,35]. As clarified previously, the
mindset change at all levels facilitates the transformation [18, 24, 35]. Such as every trans-
formation, an agile one is a change in daily habits of employees and can lead to misunder-
standings and skepticism. If all relevant parties are involved, this can be avoided [18, 35]
and enterprise-wide transparency can be ensured [68].

Fuchs and Hess [27] clustered the adoption in different phases to be able to compare them.
Figure 2.3 presents the evolving of agility in the organization over the phases. But a trans-
formation can be done in different ways. Elssamadisy [25] offered a step by step pattern
language to iterative adopt agile practices. 10 years later Kalenda et al. [35] recognized suc-
cessful transformations do not need a concrete scheme but work out better individually.
Moreover, Kalenda et al. [35] and Fuchs and Hess [27] proposed to tailor the transforma-
tion process to get a customized adoption for one’s own organization.

18



3. Related Work

After explaining the relevant main terms in the last chapter, this chapter continues with an
overview about related work regarding transformations in large-scale agile development.
Especially, scaling practices, concerns, and success factors reported in previous research
are compared. Case studies as well as literature reviews were done. The following in-
sights in eight different articles are presented chronological from 2015 until now. To sum
up, Table 3.2 gives a short overview about the entire discussed related work at the end of
this chapter.

Papadopoulos (2015): Moving from Traditional to Agile Software Development
Methodologies also on Large, Distributed Projects [49]

Papdoupoulos [49] conducted a case study to analyze the transformation process of a soft-
ware and service company. Similar to our research, a large organization was observed,
but unlike our case organization, the software and service company was geographically
distributed [49]. Following, some challenges he recognized are not assumed to find in our
study.

The following scaling practices are recommended by said scientist [49]:
1. "Multi-team backlog" - a shared backlog can lead to more transparency, while a sep-

arated backlog for every team can increase the focus on the tasks.
2. "Multiple meetings" - individual team meetings for each team facilitate conduction of

these meetings, while meetings with participants from several teams provide more
information.

3. "Scaling the Infrastructure" - the environment, such as tooling, must be scaled.
4. "Organizational agility" - the whole organization should live the agile mindset.

In the end, Papadopoulos [49] recognized an improvement in quality and employee sat-
isfaction, as well as an increased flexibility when urgent requests and content changes
appeared. Furthermore, the study showed that the transformation in a large, distributed
organization needed more planning than in smaller ones [49].

19



3. Related Work

Paasivaara and Lassenius (2016): Scaling Scrum in a Large Globally Distributed
Organization: A Case Study [48]

Paasivaara and Lassenius [48] performed a case study at a large global telecommunication
company. They observed the scaling from two to 20 agile development teams, distributed
across four sites [48]. The case organization applied LeSS, this differs from the organi-
zation examined by us, besides our case organization is not distributed. Paasivaara and
Lassenius [48] interviewed different roles during the empirical data collection to distin-
guish role-specific impressions and concerns [48].

The adopted scaling practices described were [48]:
1. Adopting a scaling framework: LeSS - The framework offered various scaling prac-

tices, which were tested partly.
2. Common meetings - Shared common sprint planning, retrospective, demo, and scrum-

of-scrums meeting with all teams were done.
3. Scaled Product Owner - An Area Product Owner role additional to the product

owner role was responsible for an entire area together with some development teams
(which still had a regular product owner, too).

In summary, Paasivaara and Lassenius [48] recognized a performing agile organization.
Unfortunately, LeSS limited the opportunities of the complex organization and under time
pressure some agile practices were not used according to the framework. LeSS may work
better if the product splitting is clearer and product areas have lower inter-dependencies
[48].

Dikert et al. (2016): Challenges and success factors for large-scale agile
transformations: A systematic literature review [18]

In 2016 Dikert et al. [18] performed a systematic literature review in which especially en-
terprise transformations have been considered. Through this study, they recognized 35
challenges and 29 success factors for large-scale agile transformations. Both, afterwards,
have been categorized, into nine and 11 categories, to get a sorted view [18].

The nine categories which cluster their found challenges sorted by their frequency (from
often to less often) are [18]:

1. "Agile difficult to implement"
2. "Integrating non-development functions"
3. "Change resistance"
4. "Requirements engineering challenges"
5. "Hierarchical management and organizational boundaries"
6. "Lack of investment"

20



7. "Coordination challenges in multi-team environment"
8. "Different approaches emerge in a multi-team environment"
9. "Quality assurance challenges"

The success factors have already been shown in Section 2.3.3. Most frequently found were:
"Choosing and customizing the agile approach [,] Management support [,] and Mindset
and Alignment" [18].

Kalenda et al. (2018): Scaling agile in large organizations: Practice, challenges, and
success factors [35]

Kalenda et al. [35] conducted a literature review and case study at a software company in
2018 to determine practices, challenges, and success factors in large-scale agile develop-
ment.

The main scaling practices identified were [35]:
1. Scaled meetings - Scaled retrospectives, scaled plannings, scaled sprint demos/re-

views, and Scrum of Scrums meetings helped to scale agile development in an orga-
nization.

2. Undone department - Specific expert teams from this department supported the de-
velopment teams with their expertise to solve undone tasks.

3. Communities of Practice - Analogical to guilds, the Community of Practice was a
network meeting frequently and discussing specific topics (see also Section 2.3.3 and
Pattern Candidate CO-01: COMMUNITY OF PRACTICE in Section 5.2.2 for more de-
tails).

4. Scaling of requirements management - To clarify requirements about tasks solved
by more than one development team further self organized meetings and tools were
added.

Kalenda et al. [35] recognized 10 different challenges in total, nine of them through litera-
ture review and one more during their case study. Three of the nine challenges found in
their literature review also appeared during their case study (see Table 3.1). As already
mentioned in Section 2.3.3, Kalenda et al. [35] additional identified several success factors
through literature review and demonstrated two of them in their case study, while finding
two previously unpublished success factors.

21



3. Related Work

Challenges by Kalenda et al. [35] Literature Review Case Study
Resistance to change X X
Distributed Environment X
Quality assurance issues X X
Integration with non-agile parts of organization X X
Lack of commitment and teamwork X
Too much pressure and workload X
Lack of knowledge, coaching and training X
Requirements management hierarchy X
Measuring progress X
Too fast roll-out X

Table 3.1.: Comparison between challenges found by Kalenda et al. [35]
in their literature review and their case study

Uludağ et al. (2018): Identifying and Structuring Challenges in Large-Scale Agile
Development Based on a Structured Literature Review [67]

Uludağ et al. [67] aimed to create a new pattern language including concerns, stakeholders,
and patterns. The Large-Scale Agile Development Pattern Graph (see Figure 3.1) is pub-
lished online [65] and gives an overview about all related information. They conducted
a structured literature review, also using the work of Dikert et al. [18] and found several
stakeholders and challenges. Recognized stakeholders for their pattern language are De-
velopment Team, Product Owner, Scrum Master, Software Architect, Test Team, Product
Manager, Program Manager, Agile Coach, Enterprise Architect, Business Analyst, Solution
Architect, Portfolio Manager, Support Engineer, and UX Expert [67]. Identified challenges
were structured into following categories [67]:

• "culture [and] mindset,
• communication [and] coordination,
• enterprise architecture,
• geographical distribution,
• knowledge management,
• methodology,
• project management,
• quality assurance,
• requirements engineering,
• software architecture, and
• tooling"

to sort and analyze them. For every reported challenge related stakeholders, category,
sources, and an ID were also documented. Some challenges were not related to specific
stakeholders, but were program specific [67].

22



Figure 3.1.: Large-Scale Agile Development Pattern Graph by Uludağ et al. [65]

The study done by Uludağ et al. [67] was just theoretical, so a validation of the founded
challenges in practice was missing. Several scientists [30, 66, 68] conducted research based
on some of their challenges and demonstrated a selection of these by investigating agile
coaches and scrum masters in large-scale agile development through empirical studies.

Fuchs and Hess (2018): Becoming Agile in the Digital Transformation: The Process of a
Large-Scale Agile Transformation [27]

Fuchs and Hess [27] compared the agile phases of two case organizations during their
transformation and analyzed every phase those organizations went through. Both organi-
zations were not IT companies even though, following a large-scale agile adoption. Fuchs
and Hess [27] choose four phases every firm passes through: "before agile, 1. agile phase,
2. agile phase [,] and 3. agile phase" [27]. The first phase for example represented the
piloting, whereas the second agile phase illustrated the restructuring of the organization
(changes influencing the management of the developers) as well as further piloting (see
Figure 2.3 in Chapter 2). The phases were used to compare the two case organizations
but did not represented special milestones. They compared the actions done through the
phases and the evolution of the challenges plus the barriers, and found analogies as well
as differences. A gaining in agility from phase to phase was noticed [27]. Recurring barrier
in all phases was the "Coordination of different organizational worlds" [27]. Additionally,
the selection of workers was experienced as concern as well as the individual adaption of
agile methods.

23



3. Related Work

Uludağ et al. (2019): Documenting Recurring Concerns and Patterns in Large-Scale
Agile Development [66]

To inspect the practical necessity of their pattern language (cf. [67]) Uludağ et al. [66] con-
ducted interviews with experts from different organizations regarding large-scale agile
development. Most experts had more than three years agile experience. The interviewees
were requested to rate the practical usability of the components of their pattern language,
resulting the pattern language was rate as useful [66].

Additionally, concerns and patterns were analyzed through interviews. Defined to ex-
emplify for the large-scale agile development pattern language, these four pattern were
explained in detail by Uludağ et al. [66]:

• P-1: STRICTLY SEPERATE BUILD AND RUN STAGES

• CO-1: COMMUNITY OF PRACTICES FOR ARCHITECTURE

• V-1: ITERATION DEPENDENCY MATRIX

• A-13: GOLDEN HAMMER

Uludağ and Matthes (2019): Identifying and Documenting Recurring Concerns and
Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile
Development [70]

With this research, Uludağ and Matthes [70] aimed to evaluate and extend their pattern
language (cf. [65, 66]). During interviews with scrum masters as well as agile coaches sev-
eral concerns were identified and analyzed. They recognized, that the adaption of frame-
works must be conducted careful. One of their Anti-Patterns is "Don’t use scaling agile
frameworks as a recipe" and demonstrates how controversial and complex the adaption of
scaling frameworks can be [70]. Through the investigation of patterns contrary opinions
were found. Their patterns should be applied individual instead of used as cooking recipe.
Overall, agile coaches as well as scrum masters faced several concerns during their daily
work life. Especially the demonstration of "the value add of agile methods" [70] as well as
other concerns regarding the mindset and coaching of their colleagues came up.

Considering all mentioned related literature, we conducted our study and had the previ-
ous findings in mind to recognize and investigate their use at the automotive company
we observed. As illustrated in Table 3.2, both, literature as well as empirical research, was
done before with various focuses.

24



Author Publication
date

Type Focus

Papadopoulos [49] 2015 case study practices and challenges
especially during the
adoption

Paasivaara and
Lassenius [48]

2016 case study scaling practices

Dikert, Paasivaara
and Lassenius [18]

2016 literature review 35 challenges and 29
success factors

Kalenda, Hyna and
Rossi [35]

2018 literature review
followed by a
case study

several practices, 9
success factors and 10
challenges

Uludağ, Kleehaus,
Capano and
Matthes [67]

2018 literature review 14 stakeholder roles and
79 challenges (for their
pattern language)

Fuchs and Hess [27] 2018 case study evolution of challenges
and barriers through
several phases of the
transformation

Uludağ, Harders
and Matthes [66]

2019 empirical
research

concerns and example
patterns which extend
their pattern language

Uludağ and
Matthes [70]

2019 pattern-based
design research

concerns and pattern
(related to agile coaches
and scrum masters) which
extend their pattern
language

Table 3.2.: Overview about related work

25



3. Related Work

26



4. Case Study

This chapter gives an overview about the case study design, including an explanation
of data collection techniques (shadowing, feedback talks, interviews, and provided data)
used for this empirical research. Later on, this chapter describes the case structure and
its environment, including an overview of the investigated automotive organization. Fi-
nally, insights in the transformation conducted at the organization are provided and found
scaling practices are presented.

4.1. Case Study Design

The data collection was based on the taxonomy according to Lethbridge et al. [40]. As men-
tioned previously in Section 1.3, the described work clustered data collection techniques
in three degrees, as displayed in Table 4.1. The data collection for this thesis was primarily
done with first and third degree data collection techniques. The following techniques were
used to study the development work, to analyze the structure of the organization and to
identify recurring concerns and good practices:

First degree: Observations of (mainly agile) meetings and workshops (see Section 4.1.1),
unstructured interviews (so-called feedback talks with members of development teams
and other stakeholders; see Section 4.1.2) and semi-structured interviews with people af-
fected by agile transformation (see Section 4.1.3) were conducted.

Third degree: Reports of prior intern analysis, tables with structural, organizational, and
technical information, wiki pages of the development teams about their work, slides, and
coaching material (see Section 4.1.4).

Category Statement
First Degree direct involvement of software engineers
Second Degree indirect involvement of software engineers
Third Degree study of work artifacts only
Table 4.1.: Data collection techniques suitable for field studies

according to Lethbridge et al. [40]

The mentioned data collection techniques are demonstrated in the following four sections.

27



4. Case Study

4.1.1. Shadowing

Lethbridge et al. [40] explained shadowing as a process where the researcher attends the
objects. For this thesis shadowing was used to get an overview about the organization, the
structure of the teams, and to be part of the agile work at the OEM. The observation started
simultaneously with the transformation. First goal was to observe the transformation pro-
cess and to get an overview about agile development work. Consequently, pilot projects
and their agile meetings were observed and reported. Daily scrum meetings, sprint plan-
nings, sprint reviews, sprint retrospectives, and some backlog refinements were visited
about a time of five months. We also followed teams to workshops and events by different
constellations (e.g. events by CO-01: COMMUNITY OF PRACTICE see more in Section 5.2).
Most observations took place in pilot teams. This is because those teams were able to com-
pare their current agility to their own evolution and act as trendsetter in the department.
All visited meetings were recorded afterwards and coded to ascertain recurring concerns
and used good practices.

4.1.2. Feedback Talks

Feedback talks were executed as informal and unstructured interviews on a frequent foun-
dation (cf. [53]) with different stakeholders. Especially, conversations with members of the
team for mentoring and implementing agile work methods were conducted. Therefore,
we got a broad overview about their experience in the development teams, with affected
managers, and stakeholders. The discussed topics changed individually by the actual is-
sues and matters of the interviewees. Most feedback talks started with a short exchange
about current activities and new practices. Furthermore, often benefits and concerns of ag-
ile work methods were broached. As the feedback talks were informal and unstructured
no static process was followed. Even the duration varied between ten to sixty minutes.
Three rounds of feedback talks have been conducted. Between the second and third round
semi-structured interviews as explained in the next section took place.

4.1.3. Interviews

Semi-structured interviews, according to Runeson and Höst [55], have been implemented
to get a general overview of the personal insights of different roles [40]. Our semi-structured
interviews contained open questions as well as closed ones [55]. The questionnaires can
be found in the Appendix A. All interviews lasted between 60 and 80 minutes, except of
one with the head of the department, because of scheduling reasons. Longer interviews
were not feasible, because of tight schedules of interviewees. The solution was to conduct
60 minutes interviews and stay as close as possible to the questionnaire, if applicable the
interviews took up to 80 minutes. All interviews were taken at the site of the organization
in German language face-to-face. The order of the questions varied slightly from interview
to interview. All interviews were recorded meanwhile and coded afterwards.

28



4.1. Case Study Design

Intro-
duction

Individual 
Back-

ground

Trans-
formation

Conclusion

Concerns
no examples 

provided

Good Practices
ways to address 

the concerns

M
an

ag
er

s
Sc

ru
m

 M
as

te
rs

, P
ro

d
u

ct
 O

w
n

er
s,

 D
ev

el
o

p
er

s

Management 
View

Concerns
selection of 

concerns from 
literature provided 

Good Practices
ways to address the 

concerns

Figure 4.1.: Process of the conducted semi-structured interviews

The process of the interviews for the four roles scrum master, product owner, developer,
and manager is presented in Figure 4.1. Each Interview started with an introduction to
explain the importance of the interview, the goal of this case study, and clarifying the con-
ditions of the interview. Afterwards a set of questions about the individual background of
the interviewee and his team followed. A few questions regarding the transformation and
its realization followed. The main part of the interviews was about concerns experienced
by the interviewee and used practices to address these. First the interview partner was
asked to list some recurring concerns he faced while adopting agile development and if
already done, how these concerns were addressed by using good practices. No inspiration
or examples were offered by the researcher. The second part of our interviews differed
according to the different roles: Product owners, scrum masters, and developers contin-
ued talking about concerns. We provided a list with concerns from literature, especially a
selection of recurring concerns listed by Uludağ et al. [67] and clustered into different cat-
egories. They were asked how often a concern appeared and additionally, if already done,
how they addressed this with good practices. The selection is explained later in this section
in detail. The possible solutions explained by the interviewees to solve arising concerns
were analyzed and documented as pattern candidates. The second half of the main part
varied for mangers: Instead of showing them the selection of concerns found by Uludağ
et al. [67] they were asked more intensively about their management view, including the

29



4. Case Study

realization of the transformation, role specific concerns, and success stories. All intervie-
wees were requested to suggest practices for other professionals in the same role. As a
conclusion the advantages and disadvantages of the agile work methods were questioned
and the interviewees were asked, whether they would like to continue agile development
or prefer to return to other development methods.

Uludağ et al. [67] listed 79 challenges based on a grounded literature review. Adapted from
the feedback talks done before and the observation, 56 concerns out of the 79 have been
selected and were presented in the interviews. Some of the 79 concerns were obviously
not relevant for this study, for example off-shore concerns, which took not place, because
the department was not distributed. The rest was selected based on previous experiences
at the case organization. Shadowing as well as insights gained by feedback talks were
used to identify possible concerns for the interview partner. The categories have been:
communication and coordination, culture and mindset, enterprise architecture, methodol-
ogy, knowledge management, geographic distribution (regarding room situations), project
management, requirements engineering and software architecture. The concerns varied in
some aspects for the product owners, scrum masters, and developers.

The leaders were asked different questions in the second part of the main body, because
the aim was to get deeper insights in the goals of the transformation, the structure of the
organization, the main practices provided by the management, the project story, and dif-
ferent management levels (cf. [48]).

The choice of the interview partners was done random through the observation of ag-
ile meetings. This ensured a broad range of roles and experience levels and guaranteed
diversity. The participation in the interviews was voluntary for all interview partners. Fi-
nally 14 interviews have been conducted with five different roles: product owner, scrum
master, developer, and manager (team leader and head of the department), an overview
of the roles can be found in Table 4.2.

Role Amount of Interviewees
Product Owner 2
Scrum Master 4
Developer 5
Team Leader 2
Head of Department 1
Sum 14

Table 4.2.: Interviewee overview

30



4.1. Case Study Design

The interviewees were picked out of six teams in the department, to get a comparison of
the arising concerns and used practices between the results of different roles in the same
team. The detailed relation between interviewees, their role, and their team is shown in
Table 4.3. The head of the department is not assigned to a special team and consequently
not listed in this table. Two scrum masters, two managers, and two product owners were
responsible for two development teams each.

Team Scrum Master Product Owner Developer Team Leader
A

1 1
1

1
B 2
C

1 1 1
D
E 1 2
F 1

Sum 4 2 5 2
Table 4.3.: Distribution of interviewees into teams

4.1.4. Provided Data

All information provided by the case organization for the use of this case study was used
to get a more detailed perspective and was handled as third degree data collection by
Lethbridge et al. [40]. Especially material (slides and coaching material) for the implemen-
tation of the transformation and workshop material about the vision of the department
and main department was included. Also, material about other departments working ag-
ile in the company and their good practices were taken into account. The organization
itself even provided reports of analysis. Moreover, tables which consisted of structural,
organizational, and technical information by the OEM were useful. The wiki pages of the
development teams facilitated the shadowing of their meetings and the understanding of
their work.

After the case study design, next the description of the OEM and the conducted transfor-
mation follows. First information about the organization and the department for vehicle
dynamics development are given. Further, process, motivation, and piloting of the trans-
formation are described. Later on, used scaling practices are demonstrated.

31



4. Case Study

4.2. Case Description

This case study took place at a large German OEM in the vehicle dynamics development.
The automotive company is internationally aligned and has more than 100.000 employees
in around 15 countries. Last year, they sold more than 2.5 million vehicles and generated a
revenue about approximately 100 billion euro. The monitored department is part of a main
department for vehicle dynamics development with around 1.000 employees and located
at one site in different buildings. The department itself contains around 140 developers,
mainly producing software elements and architecture models in different roles: function
developer, software developer, function security agent, function architect, software archi-
tect, diagnostic analyst, and others. Some also have project management duties. They
only develop for intern stakeholders, for the advanced development and the serial devel-
opment of the vehicle. Both are influenced by high regulatory and legislative requirements
and standards. Their long term goal is a 100% scaled agile vehicle dynamics development,
starting with the transformation explained in the next paragraphs.

Transformation

One and a half year before the observation, first steps towards the transformation from a
traditional matrix organization to agile development started (see Figure 4.2). In the tradi-
tional matrix organization conventional role-oriented teams worked together according to
the v-model (cf. [7]). The teams were structured skill-oriented. Interchange, when needed,
was driven by upcoming topics. To get complexity under control, the OEM started a fre-
quent exchange in project circles and optimized roles as well as tasks for a better cooper-
ation. Additionally, roles and tasks were optimized. The next step was to gain flexibility
with agile development. First pilot projects started about one year before the observation.
Each pilot was established in different circumstances as occurring. All started to use agile
practices and adopted the agile mindset. They aimed to loose the structure of roles and
tasks. The transformation for the entire department to work agile started approximately
one year later, same time the observation began. Cross-functional teams were established
to maximize flexibility. With the transformation of the department a restructuring of the
main department for vehicle dynamics development took place. This was because of dif-
ferent organizational reasons and additional had the goal to prepare the main department
for the future.

The motivation for the transformation was felt different by different colleagues. As ex-
plained before in Section 4.1.3 all interview partners were asked what they perceived as
motivation. For half of the interview partners flexibility was a motivator to work agile.
The second most important reason for the transformation was to manage changing pri-
orities in the future. More than a quarter of all interviewees mentioned the reduction of
time-to-market and project risks, a better matching with their partner departments, which
already worked agile, and improvements in their team moral as motivating. Last was

32



4.2. Case Description

1
8

 m
o

n
th

s
ag

o
1

2
 m

o
n

th
s

ag
o

n
o

w

C
o

nv
en

ti
o

n
al

N
ew

 C
o

n
ce

pt
 

P
ilo

t 
Pr

o
je

ct

V
is

io
n

Tr
an

sf
o

rm
at

io
n

▪
Sk

ill
-o

ri
en

te
d

 t
ea

m
s

▪
V

-m
o

d
el

l

▪
Fr

eq
u

en
t 

ex
ch

an
ge

 
(p

ro
je

ct
-c

ir
cl

e)
▪

O
p

ti
m

iz
at

io
n

 o
f 

ro
le

s 
an

d
 

ta
sk

s

▪
Lo

o
se

 r
o

le
s 

an
d

 t
as

k 
st

ru
ct

u
re

▪
C

o
lle

ct
iv

e 
re

sp
o

n
si

b
ili

ty
▪

A
gi

le
 m

et
h

o
d

s
▪

Fi
n

d
 g

o
o

d
 p

ra
ct

ic
es

▪
C

ro
ss

-f
u

n
ct

io
n

al
 t

ea
m

s
▪

M
ax

im
iz

e 
p

ro
d

u
ct

 
sc

o
p

e

C
R

O
SS

FU
N

C
TI

O
N

A
L 

O
R

G
A

N
IZ

AT
IO

N
M

AT
R

IX
 O

R
G

A
N

IZ
AT

IO
N

SI
M

P
LI

FY
 C

O
M

PL
EX

IT
Y 

IM
P

R
O

V
E 

FL
EX

IB
IL

IT
Y

Fe
at

u
re

 
Te

am
A

A

D

D

▪
1

0
0

 %
 s

ca
le

d
 a

gi
le

 
ve

h
ic

le
 d

yn
am

ic
s 

d
ev

el
o

p
m

en
t 

 
▪

C
o

n
ti

n
u

o
u

s 
im

p
ro

ve
m

en
t

D
ev

el
o

p
m

en
t-

Te
am

D

D

D

D

A
rc

h
it

ec
tu

re
-

Te
am

A

A

A
A

P
ro

je
ct

-C
ir

cl
e

D
ev

el
o

p
m

en
t-

Te
am

D

D
D

A
A

A
rc

h
it

ec
tu

re
-

Te
am

D
ev

el
o

p
m

en
t-

Te
am

D

D
D

Pr
o

je
ct

 

Pr
o

je
ct

A

A

D

Fi
gu

re
4.

2.
:T

ra
ns

fo
rm

at
io

n
fr

om
a

tr
ad

it
io

na
lm

at
ri

x
or

ga
ni

za
ti

on
to

a
cr

os
s-

fu
nc

ti
on

al
or

ga
ni

za
ti

on

33



4. Case Study

never mentioned by development team members, but one leader, two product owners,
and one scrum master stated it. Figure 4.3 shows an overview about all stated transforma-
tion reasons. Colored in blue are the possible motivators suggested to all interviewees and
colored in orange are reasons which were stated proactively by them. Three out of four
scrum masters felt misunderstood by higher management. They portrayed some man-
agers thought agile development results in higher efficiency and faster development. This
was confirmed by a higher manager during our research. One manager also addressed the
trend for agile development may influence the department as well as the company-wide
rising demand for agility.

1

1

1

2

2

2

3

3

3

4

4

4

4

6

7

0 1 2 3 4 5 6 7

improve software quality

maximize value

improve project visibility

simplify software delivery

improve networking

create global instead of local optima

coordinate distributed teams

increase productivity

avoid bottlenecks

reduce project risks

improve team moral

reduce time-to-market

match partner departments

manage changing priorities

flexibility

Number of interviewees who think this was a motivator for transformation

Po
ss

ib
le

 M
o

ti
va

to
r

blue: proposed motivators, orange: proactive proposed motivators

Figure 4.3.: Overview of motivators for the transformation mentioned by interviewees

As clarified before, the transformation started with several pilot projects: Seven teams al-
ready started three to 14 months before the actual transformation, as illustrated in Figure
4.4. As this figure shows, one leader has disciplinary responsibility for one or two fea-
ture teams and one product owner. The leader has no disciplinary management to the
scrum master. The scrum master guarantees a trouble-free agile development. He esca-
lates impediments and is the main contact regarding agile work for the team, the product
owner and the leader. The product owner is responsible for all technical content, while
the team and the product owner can seek for advise by the leader, but the leader should
not proactively influence how the development team solves its tasks or how the product
owner prioritizes and organizes their backlog. As in servant leadership, the manager ful-

34



4.2. Case Description

scrum master

product ownerleader

development 
team

development 
team

Agile since 14 months

scrum master

product ownerleader development 
team

Agile since 12 months

scrum master

product ownerleader development 
team

Agile since 10 months

scrum master

product ownerleader development 
team

Agile since 4 months
product ownerleader

scrum master

development 
team

development 
team

Agile since 3 months

Figure 4.4.: Overview about pilot development teams (including the duration of their
piloting)

fills two roles: the role of the disciplinary supervisor as well as the servant, who helps the
developers to work without impediments and assists when needed [29]. Ordinarily devel-
opment teams contain between six and eight developers. One exceptional case was team E
which contained 10 developers directly involved in the agile development and four exter-
nal developers still working according to the v-model because of their compliance. With
the agile work they tried to loose their strict roles and work as T-shaped developers. This
means, that they are experts in a specific field and have a broad and general knowledge
outside their core [45]. This led to a growth of knowledge in all development teams. Each
team was cross-functional responsible for one feature. For this reason they decided to call
themselves "feature team" instead of "development team". The majority of development
teams knew each other before and have worked together for some years in the traditional
organization, not organized in one team but in the same department. In summary, first
cross-functional teams in the department were pilot teams. Since the beginning of the
regular transformation additional teams planed and implemented their cross-functional
structure.

Most of the pilot projects organized themselves with the help of professional external and
internal scrum masters independent from the other pilots. Only four of the seven have
been scaled together. Divided in two groups of two development teams they shared a
backlog, product owner, scrum master, and their meetings. Some had experiences with

35



4. Case Study

agile development before, but most developers did not. They learned through own work-
shops, done by their scrum masters to explain the agile mindset and wording, professional
training, shadowing of other agile teams (see pattern candidate M-06: SHADOWING in Ap-
pendix B.1.5), online literature, and learning by doing. During the interviews developers,
who started without the support of a professional scrum master, mentioned this as a pos-
sible fail factor. During the initial state of the agile development the assistance by a scrum
master was experienced as necessary and helpful.

The development teams in the pilot have been authorized to choose their own preferred
agile framework. This was interpreted differently. In most teams developers decided self-
organized to use Scrum, nevertheless one manager forced his team to use it. In the end,
all teams oriented their agile development to Scrum, even though Scrum was initially de-
signed for small, individual, and co-located teams (cf. [48]) and is not easy adoptable to
large organizations. In the beginning this was no concern because all development teams
still worked individually. During the transformation the management of the department
offered every team the same freedom of choice to pick their preferred framework. Most
chose Scrum again.

Scaling Agile Development at the Case Organization

The scaling of the agile work at the case organization was performed by three main factors:
a dedicated work unit regarding agile methodology, the COMMUNITY OF PRACTICE, and
additionally the EMPOWERED COMMUNITY OF PRACTICE (also see their pattern candi-
dates CO-01: COMMUNITY OF PRACTICE and M-01: EMPOWERED COMMUNITY OF PRAC-
TICE in Chapter 5), and a Product Owner Board. Further other practices were used, but
these three were considered as most important. Identified good practices are explained in
the next chapter.

To supervise the agile work a new work unit responsible for the implementation and men-
toring of agile work methods was installed. This team of scrum masters, agile coaches,
and development specialists led the case organization through the agile transformation.
As mentioned before, the scrum masters were not assigned to the managers of the devel-
opment teams. They were assigned to this separate work unit to avoid disciplinary pres-
sure by managers and to facilitate the assigning of scrum masters to development teams.
In addition, the work unit was experienced as a good way for networking between scrum
masters. For networking, they organized additional meetings with scrum masters from
other departments at the company to discuss concerns and exchange practices. This work
unit provided guidance for development teams, not only in the initial state, and offered
workshops lasting several hours up to several days for the different demands of devel-
opment teams. They also guaranteed to answer requests by the management regarding
agility and the agile coaching of the management. Additionally, the installation of tools

36



4.2. Case Description

to assist agile development and wiki platforms was supported. This work unit dedicated
agile work methods is not only a change team (cf. [70]), but also responsible for the agile
development in the future after the transition.

Within the beginning of the transformation, the first COMMUNITY OF PRACTICE (see Pat-
tern Candidate CO-01) and their extension, the EMPOWERED COMMUNITY OF PRACTICE

(see Pattern Candidate M-01), were set up. As Paasivaara and Lassenius [47] explained
in their paper about "communities of practice in large distributed agile software develop-
ment organization", the COMMUNITY OF PRACTICE in agile development differ from other
known communities. They need a domain, community, and practice to evolve. The do-
main is the topic which connects the community. For example in our case organization
one established COMMUNITY OF PRACTICE was assigned to architecture. The community
of a COMMUNITY OF PRACTICE includes all interested developers from different develop-
ment teams. Their practices varied. Most have been observed to share knowledge as well
as to discuss current concerns and interesting cases regarding their domain. Additionally,
they generated processes and tools and discussed universal topics. Paasivaara and Lasse-
nius [47] investigated eight characteristics of a successful COMMUNITY OF PRACTICE [47].
To compare these characteristics with the adoption of the COMMUNITY OF PRACTICE and
the EMPOWERED COMMUNITY OF PRACTICE in the case organization Table 4.4 illustrates
the differences as well as similarities at the end of this chapter. A COMMUNITY OF PRAC-
TICE can end as fast as it started, it lasts only as long as the community participates [47].
As only the first months of the transformation have been observed, no COMMUNITY OF

PRACTICE declined but many new evolved.

As said before, also their extensions (M-01: EMPOWERED COMMUNITY OF PRACTICE)
started. They had additional rights compared to the usual COMMUNITY OF PRACTICE.
While a COMMUNITY OF PRACTICE was not obligatory but voluntary and was not auto-
matically allowed to make decisions valid for all development teams, the EMPOWERED

COMMUNITY OF PRACTICE was both. That means, an EMPOWERED COMMUNITY OF

PRACTICE had the right to make decisions which had to be respected by all development
teams. Additionally from every relevant development team one developer must be sent
to the EMPOWERED COMMUNITY OF PRACTICE. In contrast to a usual COMMUNITY OF

PRACTICE the EMPOWERED COMMUNITY OF PRACTICE was approved and established by
the management. The management chose which COMMUNITY OF PRACTICE must be em-
powered by using the agile decision making model provided by Uludağ et al. [71] and
decided for which development teams the content was relevant and following obligatory.
As shown with exemplary content in Figure 4.5 the decision-making model contains two
axis: the x-axis represents the scope, which means how many feature teams will be influ-
enced by a topic. The y-axis represents intern regulations and costs. If a topic is low in one
or both a COMMUNITY OF PRACTICE but no EMPOWERED COMMUNITY OF PRACTICE is
needed. For example artificial intelligence (AI) was used by some teams but was rated low
in costs and regulations. Consequently, a COMMUNITY OF PRACTICE was created, whereas

37



4. Case Study

Obligatory 
Empowered 
Communities 
of Practice

Voluntary 
Communities of 

Practice

Scope
# of Feature Teams

Intern Regulations,
Costs

Tooling
Voluntary 

Communities of 
Practice

Voluntary 
Communities of 
Practice

Security

AI

Test and 
Validation

Architecture

Agile

Figure 4.5.: Agile Decision-Making Model by Uludağ et al. [71] for the COMMUNITY OF

PRACTICE and the EMPOWERED COMMUNITY OF PRACTICE

for security an EMPOWERED COMMUNITY OF PRACTICE was established. This domain is
high in both, because intern regulations are strict to achieve the regulations by the legisla-
tor and relevant for all development teams producing software and models for the vehicle.

Another method used for scaling is the Product Owner Board. This is a circle where the
product owners and the higher management of the department and main department
came together frequently to create and prioritize additional tasks for an additional shared
backlog. All stakeholders were allowed to bring tasks into the circle if they rated them as
highly important. Consequently, the higher management decided about it. The Product
Owner Board was also used for the exchange of the product owners. They exchanged tasks
and coordinated them to the best fitting feature team. This led to a networking advantage
for them. The board also coordinated the communication with other departments in the
company.

38



4.2. Case Description

Characteristics by
Paasivaara and
Lassenius [47]

Adaption of Communities
of Practice
(see CO-01: COMMUNITY OF

PRACTICE)

Adaption of Empowered
Communities of Practice
(see M-01: EMPOWERED

COMMUNITY OF PRACTICE)
Interesting topic and
concrete benefits

Participants were involved in
the decision making process,
were invited to bring own
suggestions for topics and
used the chance to stay
updated about upcoming
topics in the domain of the
Community of Practice.
Furthermore, they gained
knowledge as well as
competencies.

All arguments of the
COMMUNITY OF PRACTICE

are valid too. But as the
participation was obligatory
it was possible that not each
participant was interested in
the topic.

Passionate leader As the selection of the leader
was done by the participants,
they selected another leader
in case the leader was not
able to motivate everyone.

The management selected a
leader.

Proper agenda Previously the agenda was sent to all possible participants,
everyone was invited to add own items to the agenda.

Decision making
authority

Provided with the needed
authority the COMMUNITY

OF PRACTICE evolved
processes and tools as long
as the decisions did not
influence other domains.

They had the authority to
make decisions valid for
everyone. If decisions
influenced another
EMPOWERED COMMUNITY

OF PRACTICE, they were
requested to collaborate.

Open community Every interested colleague was invited to participate.
Supporting tools to
create transparency

Wiki pages about every COMMUNITY OF PRACTICE and
each EMPOWERED COMMUNITY OF PRACTICE were estab-
lished, but transparency about the decision making process
and discussions was just guaranteed for participants.

Suitable rhythm The participants decided how often they needed to met.
Cross-site participation
when needed

No cross-site participation was needed because the depart-
ment was located at one site.

Table 4.4.: Comparison between characteristics of successful Communities of Practice [47]
and the adaption at the case organization

39



4. Case Study

40



5. Observing and Identifying Recurring
Concerns and Good Practices

This chapter summarizes all relevant results based on the data collection at the case organi-
zation. First, the recurring concerns which have been mentioned by the interviewees and
identified through shadowing are clarified in Chapter 5.1. They are separated in the ones
which have been based on literature and the ones mentioned proactively. Good practices
have been investigated at the case organization, were edited as pattern candidates, and are
presented in the second part of this chapter (see 5.2). Because good practices have been
identified at just our case organization they are pattern candidates, not pattern.

5.1. Recurring Concerns

During the rigorous shadowing of the agile development at the case organization (see
Chapter 4.1.1), the unstructured feedback talks with several different stakeholders and
employees in different situations of the transformation (see Chapter 4.1.2), and the con-
ducted semi-structured interviews (see Chapter 4.1.3) with 14 employees of the depart-
ment various concerns have been identified. The findings extend the list of 79 concerns by
Uludağ et al. [67] which was previously expanded by Harders [30] to in total 115 concerns.
During the second part of the conducted interviews, a selection of 56 concerns of the 79
concerns by Uludağ et al. have been presented to the interviewees. These had the chance
to annotate and label which concerns came up during the agile development. Since the ob-
servation took place during the transformation phase not all concerns appeared the whole
time, some had been more important at the beginning, some not before the pilot teams had
a few months experience (see Figure 5.1).

As the interviewees were first asked to proactively mention their concerns, they stated
some of the concerns which also were listed in the selection of the concerns prepared for
the second part of the interviews. The duplicates were merged directly during the evalua-
tion and coding of the interviews. Only concerns which were mentioned in the first phase
of the interview and were also in the list of concerns for the second part were counted as
duplicates. The merging guaranteed to have a well-arranged list of concerns. 55 of the
selected and presented 56 concerns were stated as recurring at the case organization. Ad-
ditional 29 new concerns were found during the interviews. The new findings are listed
by their descending order, regarding their frequency. The numbering starts with 116, be-

41



5. Observing and Identifying Recurring Concerns and Good Practices

cause 115 concerns (79 by Uludağ et al. [67], and 36 more by Harders [30]) were already
identified:

C-116: How to collaborate with the traditional world? The clash of traditional and agile
development leads to concerns which influence not only the agile working people
but also the ones still working according to the traditional work methods. The in-
teraction with the remaining organization is not clear for everyone, since there are
different dependencies and different contacts. The satisfaction of all parties through-
out the hierarchy is hard to gain. Both must cooperate to find compromises, e.g.
when communicating shorter cycles to facilitate the working in sprints for the agile
development and still ensuring a smooth working for the other party with mini-
mal additional expenses. Supplementary, explaining the agile work (and getting rid
of false rumors) to the traditional working people and giving the highest possible
transparency has to be done. Related to this concern is the "[p]roblematic coordina-
tion with other business units" [27], which was also recognized by Fuchs and Hess
in their case study. Also Kalenda et al. recognized the "[i]ntegration with nonagile
part of organization" as recurring concern found in literature they analyzed as well
as in the organization they observed [35].

C-117: How to handle false rumors? In management forums the agile development is
sometimes seen as a more efficient and faster working method. It is hard to get rid of
such rumors. From several viewpoints it is not clear when exactly such claims first
emerged. They do not lead to the right agile mindset.
Ulludağ and Matthes’ [70] "C-91: How to demonstrate the value add of agile methods?" as
Harders’ [30] "C-113: [How to create] the [a]gile [m]indset for [h]igher [m]anagement[?]"
refer to this concern. The claim can be avoided by understanding the motivation and
the real improvement of agile development, as well as creating the real agile mindset
through all management levels. A scrum master mentioned that false rumours came
up more often in higher management.

C-118: How to handle regulatory standards? High regulatory legal standards and company-
standards can complicate the work. Some regulatory standards are in contrast to
the agile mindset. For example, standards require specific documentations, while
the Agile Manifesto prefers "working software over comprehensive documentation"
[74]. Regulatory standards equate both.

C-119: How to coordinate imperfect room situations? No open project areas, rooms for
open discussions, and spontaneous meetings impede developers from working to-
gether in one place.

C-120: How to guarantee the right understanding of roles? All persons concerned must
understand the new roles scrum master and product owner. Additionally, they need
to understand the evolution of their own role, especially leaders, who should only

42



5.1. Recurring Concerns

act as a disciplinary manager and should give the developer the needed freedom to
work. Sometimes the leader must solve tasks which were in the traditional develop-
ment assigned to the project manager, but are not assigned to the product owner in
the agile work, so bottlenecks accrue. Also developers must understand their evo-
lution and their growing responsibility. The right filling of positions gains relevance
for every participant, because of the closer cooperation. During working the ful-
fillment of all roles must be guaranteed. This leads to concerns if the roles are not
understood.
This concern is related to C-58: How to deal "with loss of management control"? by
Uludağ et al. [67]. These scientists mentioned exactly the change of the management
role and the missing understanding for this change, as well as C-99: How to handle
"missing understanding of roles"? by Harders [30] describes. She describes with this
concern the understanding of the roles meaning, while the new concern we found
describes the understanding of the evolution of roles and the working following the
new responsibility.

C-121: How to reduce sideline activities? Developers need to solve urgent tasks which
come up spontaneously and cannot be solved by others. Because of this they cannot
spend their entire time for the sprint tasks. Because nobody else is responsible for
the sideline tasks, they needed to solve them - otherwise nobody would solve them.
Scrum masters and developers feel powerless and do not know how to avoid these
sideline activities.

C-122: How to find time for training? Teams (and their manager) must take their time to
learn and must be willing to spend time for sharing knowledge instead of using it
for developing.

C-123: How to simplify a complex tooling environment? The tooling environment cre-
ates local instead of global optima, which also happened before, but gains relevance
through agile work. The tooling environment must be customized and facilitated for
the agile development, which takes time to develop. So every developer can simply
use the tooling environment, without a long training period. If given tools are to
complicated, one developer mentioned that the decision to work without tools and
use own solutions requires courage and should be made in the team.

C-124: How to share knowledge in the team to back-up failures? Agile work benefits
from the chance to back-up the work of others. T-shaped people give developers the
possibility to choose the part of work they enjoy the most. But on the other hand,
this requires discipline and perseverance while also training aspects they might not
enjoy.

C-125: How to distribute competencies across the team? The set up of competencies
across the team requires time, patience, and the aspiration of every single developer
to educate oneself further.

43



5. Observing and Identifying Recurring Concerns and Good Practices

C-126: How to find the same wording for agile terms? The same word does not automati-
cally describe the same meaning for everyone. Especially inexperienced agile partic-
ipants do not use the right wording and often do not understand what is meant by
others. The language barrier slows done the developing and the common vision.

C-127: How to recognize the need for self-discipline? Agile developing requires a lot more
self-discipline by every single developer. Without this discipline the sprint cannot be
fulfilled as planned. The organization of the personal work life, which was more
individual before, influences the entire team.
This concern is related to "C-95: How to deal with lacking orientation due to missing
leadership?" by Uludağ and Matthes [70] which describes the decreasing degree of
leadership through agile development and the following personal responsibility of
developers as part of their team.

The following three concerns have been mentioned by only two, not the needed three
times, of the interviewees proactively through the first phase of the interview. Three in-
dependent times are needed to call the concerns recurring (cf. [16]). Consequently, the
following three concerns are not automatically recurring. Nevertheless they are, because
they have also been observed in other empirical studies by Harders [30], Dikert et al. [18],
Fuchs and Hess [27] or Kalenda et al. [35].

C-128: How to work without the needed support by the management? If the management,
especially the first row leaders, does not support the development teams, the agile
developing cannot evolve. The management must live the agile mindset as well as
the operating developers have to. Additionally, the managers are the leading part-
ners for the developers to avoid frustration.
This concern is related to Harders’ C-113: How to create "the [a]gile [m]indset for [h]igher
[m]anagement"? [30]. The establishment of an agile mindset in the management sup-
ports the development teams. Also Dikert et al. [18] mentioned that the unwilling-
ness of the management to change occurred in 10 percent of their observed organi-
zations. Additionally, they recognized the "Management in waterfall mode" [18] as a
concern in 14 percent of their observed organizations, which was also monitored at
the case organization. Also Fuchs and Hess [27] recognized a "[l]ack of top manage-
ment engagement" during the agile transformation in their case study.

C-129: How to prevent old wine in new bottles? A new name does not automatically bring
new forms of developing. All participants must take care that "no old wine in new
bottles" (cf. [41]) is served. One product owner mentioned that arose especially in
the initial phase of agile working.
The concern "Reverting to the old way of working" by Dikert et al. [18] is related to
this one. Especially in stress situations and during the transformation agile teams
need to take special care to stay in the agile mindset. Equally Kalenda et al. [35]
recognized that quality assurance issues by using old instead of agile methods have
been found in the literature they analyzed as well as in the case they observed.

44



5.1. Recurring Concerns

C-130: How to avoid a growing pressure to single developers due to the growing respon-
sibility for the team? Fulfillment of the given roles and a shared responsibility are
needed. Otherwise, single developers experience a growing pressure due to the
feeling of being responsible for the whole team, if the team does not share the re-
sponsibility. The pressure for developers was also recognized as a recurring concern
through the literature analyzed by Kalenda et al. [35].

The following concerns have been mentioned by one or two interviewees independently.
As a result, these are not recurring regarding to Coplien [16]. However, they have been
declared as concerns which the interviewees had to face.

C-131: How to ensure networking and knowledge sharing across several development
teams? The initial phase of communities was experienced as a concern: The right
casting of the position community coordinator (also called community lead), the mo-
tivation of developers, and the guarantee that no knowledge gets lost needed to be
ensured.

C-132: How to handle long waiting times due to dependencies? Long cycles between
the start of architecture and its software release because of dependencies and test-
ing phases hinder releasing potentially shippable product increment at the end of a
sprint.

C-133: How to handle separate development (advanced development and serial develop-
ment)? The difference between advanced development and serial development in a
sprint is insignificant, anyways it is significant for single developers. This leads to
differences. Urgent requests for serial development are often cost intensive, so they
should be handled first.

C-134: How to prioritize complex and intricate items? The product owner has problems
to prioritize the complex and intricate backlog items without the help of the devel-
opment teams. This makes the product owner to be a bottleneck and requires time
by the team members. Also a very large backlog causes concerns, while the backlog
is not clearly shown, so prioritizing is hard.

C-135: How to avoid knowledge isles? Punctual knowledge is spread over the whole
company, but only saved in the minds and nowhere documented. Knowledge isles
complicate the sharing of knowledge and increase the risk to loose knowledge when
working cross-functional instead of skill-oriented.

C-136: How to prevent justifications for being the pilot project? Pilots worry, that they
need to justify their new way of working and explain everyone their motivation as
well as their improvements regarding traditional way of working. This was experi-
enced as an emotional strain and costs time.

45



5. Observing and Identifying Recurring Concerns and Good Practices

C-137: How to escalate impediments? Neutral and rational phrasing of impediments
must be learned. Also the acceptance for different opinions and an open minded
position in discussions to escalate impediments. This is not only relevant for the de-
velopment team members (as one developer mentioned), but also for the communi-
cation between manager, product owner, scrum master, and the development team.
Also a lack of technical understanding of externals should not be felt as irritating.

C-138: How to facilitate refinements? Without realizing the importance of refinement
meetings development team members do not understand them as an improvement
for their sprint but instead experienced refinement meetings as a waste.

C-139: How to establish a team harmony? Harmony in teams now has a higher value
than it had before. The leader and the scrum master must take the responsibility to
take care of a harmonious cooperation.

C-140: How to handle lone fighters? Some individualists need more time until they think
and act as team worker. They need more attention by the scrum master, product
owner, and leader. It takes also patience by all other team participants to involve
them in the team.

C-141: How to apply test driven development without testing in the own team? For test
driven development the test concept must be located (partly) in the own develop-
ment team. If this is not the case writing tests twice results in a waste of code. Addi-
tional bugs can be the result of different test cases.

C-142: How to unite developers from different organizational units? Developers from dif-
ferent organizational units who work together in one development team experience
political pressure and inequality. This leads to a negative dynamic in the team. Es-
pecially, if this concern and C-121: How to reduce sideline activities? come together,
political stress results.

These concerns did not came up all at the same time. As the interviewees mentioned and
the analysis of the observation showed some happened in the earlier phase of the pilot-
ing while others gained importance later. Also the duration varied. The arising of the
recurring concerns is shown in Figure 5.1, especially the increasing and decreasing of the
concerns. The time frame is clustered in agile phases as also Fuchs and Hess [27] used. The
first agile phase represents the piloting, while the second one represents the phase restruc-
turing the department. In our case organization the adoption of scaled agile development
started in April 2019 (cf. start of the second agile phase in Figure 5.1).
C-119: How to coordinate imperfect room situations? is not listed, because this concern was
addressed by creating more project rooms and changing the seating arrangement in the
office, consequently it is not related to special agile phases.

46



5.1. Recurring Concerns

C-116: How to collaborate with the traditional world?

C-117: How to handle false rumors?

C-118: How to handle regulatory standards?

C-120: How to guarantee the right understanding of roles?

C-121: How to reduce sideline acitivites?

C-122: How to find time for training?

C-123: How to simplify a complex tooling environment?

C-124: How to share the knowledge in the team to back-up failures?C-124

C-126: How to find the same wording for agile terms?

C-127: How to recognize the need for self-discipline?

C-128: How to work without the needed support by the management?

C-129: How to prevent old wine in new bottles?

C-125: How to distribute competencies across the team? C-125 C-125

: C-130: How to avoid a growing pressure to single developers due to the growing responsibility for the team?

1. Agile Phase (Piloting) 2. Agile Phase 

2018 April 2019

Figure 5.1.: Chronological sequence of the occurrence of the new recurring concerns

All concerns are assigned to categories. The scheme for the categories was first introduced
by Uludağ et al. in their listing of 79 concerns [67]. The following categories are used:

1. Culture and Mindset,
2. Knowledge Management,
3. Methodology,
4. Communication and Coordination,
5. Requirements Engineering,
6. Project Management,
7. Tooling,
8. Software Architecture and
9. Quality Assurance.

Table 5.1 offers an overview of all new concerns and these categories, while Figure 5.2
shows the distribution of their categories. For reasons of comparability, the categories-
distribution of all found concerns is illustrated in Figure 5.3.

47



5. Observing and Identifying Recurring Concerns and Good Practices

ID Concern Category
C-116 How to collaborate with the traditional world? Culture and Mindset
C-117 How to handle false rumors? Culture and Mindset
C-118 How to handle regulatory standards? Requirements Engineering
C-119 How to coordinate imperfect room situations? Communication and Coordi-

nation
C-120 How to guarantee the right understanding of roles? Methodology
C-121 How to reduce sideline activities? Project Management
C-122 How to find time for training? Knowledge Management
C-123 How to simplify a complex tooling environment? Tooling
C-124 How to share the knowledge in the team to back-up

failures?
Knowledge Management

C-125 How to distribute competencies across the team? Knowledge Management
C-126 How to find the same wording for agile terms? Methodology
C-127 How to recognize the need for self-discipline? Culture and Mindset
C-128 How to work without the needed support by the

management?
Culture and Mindset

C-129 How to prevent old wine in new bottles? Culture and Mindset
C-130 How to avoid a growing pressure to single develop-

ers due to the growing responsibility for the team?
Culture and Mindset

C-131 How to ensure networking and knowledge sharing
across several development teams?

Methodology

C-132 How to handle long waiting times due to dependen-
cies?

Software Architecture

C-133 How to handle seperate development (advanced de-
velopment and serial development)?

Project Management

C-134 How to prioritize complex and intricate items? Requirements Engineering
C-135 How to avoid knowledge isles? Knowledge Management
C-136 How to prevent justifications for being the pilot

project?
Culture and Mindset

C-137 How to escalate impediments? Communication and Coordi-
nation

C-138 How to facilitate refinements? Methodology
C-139 How to establish a team harmony? Culture and Mindset
C-140 How to handle lone fighters? Culture and Mindset
C-141 How to apply test driven development without test-

ing in the own team?
Quality Assurance

C-142 How to unite developers from different organiza-
tional units in one development team?

Communication and Coordi-
nation

Table 5.1.: New findings on concerns and their categories

48



5.1. Recurring Concerns

Quality Assurance
4% (1 concern) Software Architecture

4% (1 concern)

Tooling
4% (1 concern)

Project Management
7% (2 concerns)

Requirements 
Engineering

7% (2 concerns)

Communication and 
Coordination

11% (3 concerns)

Methodology
15% (4 concerns)

Knowledge Management
15% (4 concerns)

Culture and Mindset
33% (9 concerns)

Figure 5.2.: Distribution of categories of new found concerns

Tooling
1% (1 concern)

Quality Assurance
1% (1 concern)

Geographical Distribution
1% (1 concern)

Enterprise Architecture
4% (3 concerns)

Methodology
9% (7 concerns)

Communication and 
Coordination

11% (9 concerns)

Software Architecture
11% (9 concerns)

Project Management
11% (9 concerns)Knowledge Management 

11% (9 concerns)

Requirements Engineering
13% (11 concerns)

Culture & Mindset
27% (22 concerns)

Figure 5.3.: Distribution of categories of all found concerns

49



5. Observing and Identifying Recurring Concerns and Good Practices

Figure 5.4 and Figure 5.5 present all concerns which occurred in the case organization,
excluding duplicates because these have been merged before. To see which role picked
which concerns, Figure 5.4 shows how often a scrum master, product owner, developer or
manager mentioned proactively one of the concerns during the first phase of the interview.
The interviewees did not know which concerns were mentioned by others. Figure 5.5
shows the same comparison for the selection of concerns which were presented to the
interviewee. Since this part of the interview was specially conducted with scrum masters,
product owners, and developers only, these roles are shown in the graph.

0 1 2 3 4 5 6

C-142: How to unite developers from different organizational units in…

C-141: How to apply test driven development without testing in the…

C-140: How to handle lone fighters?

C-139: How to establish a team harmony?

C-138: How to facilitate refinements?

C-137: How to escalate impediments?

C-136: How to prevent justifications for being the pilot project?

C-135: How to avoid knowledge isles?

C-134: How to prioritize complex and intricate items?

C-133: How to handle seperate development (advanced development…

C-132: How to handle long waiting times due to dependencies?

C-131: How to ensure networking and knowledge sharing across several…

C-130: How to avoid a growing pressure to single developers due to the…

C-129: How to prevent old wine in new bottles?

C-128: How to work without the needed support by the management?

C-127: How to recognize the need for self-discipline?

C-126: How to find the same wording for agile terms?

C-125: How to distribute competencies across the team?

C-124: How to share the knowledge in the team to back-up failures?

C-123: How to simplify a complex tooling environment?

C-122: How to find time for training?

C-121: How to reduce sideline acitivites?

C-120: How to guarantee the right understanding of roles?

C-119: How to coordinate imperfect room situations?

C-118: How to handle regulatory standards?

C-117: How to handle false rumors?

C-116: How to collaborate with the traditional world?

Datenreihen1 Datenreihen2 Datenreihen3 Datenreihen4Developer LeaderScrum Master Product Owner

Figure 5.4.: Overview about which concerns were mentioned proactively how often by the
four different roles (scrum master, product owner, developer, and leader)

50



5.1. Recurring Concerns

0 1 2 3 4 5 6 7 8 9

C-66: How to foster technical excellence?

C-44: How to deal with communication gaps with stakeholders?

C-28: How to communicate business requirements to development teams?

C-26: How to align and communicate architectural decisions?

C-25: How to manage and integrate heterogeneous subsystems of different…

C-8: How to ensure that non-functional requirements are considered by the…

C-73: How to deal with decreased predictability?

C-23: How to establish a common scope for different stakeholder groups?

C-20: How to facilitate communication between agile teams and other…

C-16: How to deal with increasing workload of key stakeholders?

C-14: How to create a proper upfront architecture design of the system?

C-13: How to share common vision?

C-9: How to finde the right balance between architectural improvements…

C-78: How to synchronize sprints in the large-scale agile development…

C-74: How to empower agile teams to make decisions?

C-72: How to consider required competencies when assigning teams to…

C-70: How to define high-level requirements a.k.a. epics?

C-58: How to deal with loss of management control?

C-55: How to create a teamwork centric rewarding model?

C-43: How to enforce customer involvement?

C-27: How to manage and share knowledge about system components and…

C-2: How to consider integration issues and dependencies with other…

C-77: How to build an effective coaching model?

C-71: How to measure the success of the large-scale agile development…

C-69: How to establish requirements verification?

C-67: How to encourage development teams to talk about tasks and…

C-65: How to deal with office politics?

C-60: How to create and estimate user stories?

C-50: How to deal with lacking sense of ownership responsibilities for…

C-33: How to build trust of stakeholders in agile practices?

C-22: How to balance short-term and long-term goals?

C-15: How to elicitate and refine requirements of end users?

C-1: How to coordinate multiple agile teams that work on the same product?

C-56: How to define clear roles and responsibilities?

C-49: How to deal with increased efforts by establishing inter-team…

C-47: How to deal with higher-level management interferences?

C-46: How to deal with closed mindedness?

C-45: How to deal with black and white mindsets?

C-38: How to facilitate standardization across agile teams?

C-31: How to deal with geographical distance between agile teams?

C-19: How to deal with internal silos?

C-10: How to create precise requirement specifications for the…

C-6: How to manage technical debts?

C-4: How to deal with doubts in people about changes?

C-39: How to establish a culture of continuous improvement?

C-35: How to define clear and visible priorities?

C-24: How to create team spirit and trust among agile teams?

C-21: How to manage dependencies to other existing environments?

C-18: How to split large and complex requirements into smaller…

C-59: How to establish a common understanding of agile thinking and…

C-41: How to deal with unplanned requirements and risks?

C-17: How to establish self-organization?

C-7: How to deal with incorrect practices of agile development?

C-5: How to facilitate shared context and knowledge?

C-37: How to create lightweight documentation?

Datenreihen1 Datenreihen2 Datenreihen3Scrum Master Product Owner Developer

Figure 5.5.: Overview about which concerns of the selection were annotated how often by
scrum masters, product owners, and developers

51



5. Observing and Identifying Recurring Concerns and Good Practices

To sum up, 12 new recurring concerns have been found through the analysis of agile de-
velopment during the transformation at the case organization. Three more concerns have
been identified which also can be classified as recurring in regards to the literature where
they appeared too. The interviewees had to face 12 more new concerns, which were not
classified as recurring. 55 concerns from the presented selection were labeled as occurring
at the case organization.

The concerns vary in their complexity. For example C-119: How to coordinate imperfect
room situations? was solved at the case organization by improving the room situation.
New project rooms and open spaces were established for feature teams. Another exam-
ple to mention is C-132: How to handle long waiting time due to dependencies?: Feature teams
from the pilot project started to coordinate their suppliers delivery period with their sprint
times. New suppliers guaranteed to develop agile, used the same sprint rhythm, and the
product owners coordinated the sprint backlog to avoid waiting times. However, some
concerns seemed to be solved easier than others. Especially concerns regarding the cate-
gory Culture and Mindset took more time, as several interviewees pointed out. Since the
organization aimed to eliminate these too, they adopted several good practices which we
explain in the next chapter.

52



5.2. Good Practices

5.2. Good Practices

At the case organization several good practices have been identified. These were analyzed
and summarized as pattern candidates. 17 pattern candidates have been found. One Prin-
ciple, two Coordination Patterns, seven Methodology Patterns, six Viewpoint Patterns,
and one Anti-Pattern. An overview of all found pattern is given in Table 5.2.

ID Pattern Candidate
Principle

P-01 CREATE T-SHAPED PEOPLE

Coordination Patterns
CO-01 COMMUNITY OF PRACTICE

CO-02 BACKLOG GROOMING

Methodology Patterns
M-01 EMPOWERED COMMUNITY OF PRACTICE

M-02 PILOTING

M-03 TRAVELLING

M-04 SHARE THE CHANGE

M-05 COME TO OUR DEMOS

M-06 SHADOWING

M-07 SHARE A MAILBOX

Viewpoint Patterns
V-01 RADAR CHART

V-02 ROADMAP

V-03 PROJECT PLAN

V-04 SYNCHRONIZED CALENDAR

V-05 STARFISH

V-06 BURNDOWN CHART

Anti-Pattern
A-01 DON’T COMBINE DEVELOPERS FROM DIFFERENT ORGANIZA-

TIONAL UNITS IN ONE DEVELOPMENT TEAM

Table 5.2.: Pattern candidates identified at the case organization

The relationships between observed roles, pattern candidates itself, and occurring con-
cerns which they address are graphically presented in Figure 5.6. As not all practices were
established in the same time, Figure 5.7 demonstrates the process of main scaling practices
(special work unit for agile methods, COMMUNITY OF PRACTICE with EMPOWERED COM-
MUNITY OF PRACTICE, and Product Owner Board), as well as all Methodology Pattern
Candidates and Viewpoint Pattern Candidates which can be assigned to a special time.

53



5. Observing and Identifying Recurring Concerns and Good Practices

C
-5

C
-

26
C

-
27

C
-

38
C

-
35

C
-

67
C

-7
C

-
59

C
-4

C
-

33
C

-
47

C
-

41
C

-
49

C
-

39
C

-
72

C
-

78
C

-9
C

-
13

C
-

22C
O

-
01

C
o

m
m

u
n

ity 
o

f
P

ractice

V
-

01

V
-

02

V
-

03
V

-
04

V
-

05
V

-
06

R
ad

ar 
ch

art
P

ro
ject 

p
lan

Starfish

R
o

ad
m

ap

Syn
ch

ro
n

ized
 

calen
d

ar
B

u
rn

d
o

w
n

ch
art

A
-

01

D
o
n
‘t

co
m

b
in

e
d

evelo
p

ers
fro

m
d

ifferen
t o

rgan
izatio

n
al 

u
n

its
in

 o
n

e
d

evelo
p

m
en

t
team

M
-

01
M

-
02

M
-

03
M

-
04

M
-

0
5

M
-

06

M
-

07

Em
p

o
w

ered
C

o
m

m
u

n
ity 

o
f

P
ractice

Travellin
g

Sh
are th

e
ch

an
ge

C
o

m
e to

o
u

r
d

em
o

s
Sh

ad
o

w
in

g
Sh

are a 
m

ailb
o

x

C
-

118
C

-
122

C
-

116
C

-
117

C
-

128
C

-
121

C
-

130
C

-
137

C
-

138

P
-

01

P
ilo

tin
g

C
reate T-
sh

ap
ed

p
eo

p
le

C
-

142
C

-
81

C
-

124
C

-
125

C
-

135

B
acklo

g 
gro

o
m

in
g

C
O

-
02

C

ro
le

faces
co

n
cern

C
A

/P
/C

O
/M

/
V

-P
attern

 C
.

co
n

cern
is

ad
d

ressed
b

y
p

attern

P
/C

O
/M

/V
-

P
attern

 C
.

M
-P

attern
 

C
an

d
id

ate

co
m

b
in

ed
u

se
reco

m
m

en
d

ed

P
/M

/V
-P

attern
 

C
. (1)

M
/V

-P
attern

 C
. 

(2
)

to
fu

llfill
(1

) u
se

(2
)

p
ro

d
u

ct o
w

n
er

scru
m

 m
aster

lead
er

d
evelo

p
m

en
t team

Figure
5.6.:R

elationship
betw

een
differentroles,their

concerns,and
the

identified
pattern

candidates

54



5.2. Good Practices

A
P

R
IL

M
A

Y
JU

N
E

JU
LY

A
U

G
U

ST

O
b

se
rv

at
io

n

St
ar

t

M
-0

4
 S

h
ar

e 
th

e 
C

h
an

ge

M
-0

2
 P

ilo
ti

n
g

M
-0

6
 S

h
ad

o
w

in
g

M
-0

3
 T

ra
ve

lli
n

g

V
-0

4
 S

yn
ch

ro
n

iz
ed

 C
al

en
d

ar

Pr
o

d
u

ct
 O

w
n

er
 B

o
ar

d

Sp
ec

ia
l W

o
rk

 U
n

it
 fo

r 
A

gi
lit

y

M
-0

1
 E

m
p

o
w

er
ed

 C
o

m
m

u
n

it
ie

s 
o

f 
Pr

ac
ti

ce

C
O

-0
1 

C
o

m
m

u
n

it
ie

s 
o

f 
Pr

ac
ti

ce

Fi
gu

re
5.

7.
:P

ro
ce

ss
of

th
e

es
ta

bl
is

hm
en

ta
nd

us
e

of
sc

al
in

g
pr

ac
ti

ce
s

an
d

se
le

ct
ed

pa
tt

er
n

ca
nd

id
at

es

55



5. Observing and Identifying Recurring Concerns and Good Practices

In the following sections one Principle Candidate (P-01: CREATE T-SHAPED PEOPLE), one
Coordination Pattern Candidate (CO-01: COMMUNITY OF PRACTICE), two Methodology
Pattern Candidates (M-01: EMPOWERED COMMUNITY OF PRACTICE and M-03: TRAV-
ELLING), one Viewpoint Pattern Candidate (V-04: SYNCHRONIZED CALENDAR), and one
Anti-Pattern Candidate (A-01: DON’T COMBINE DEVELOPERS FROM DIFFERENT ORGANI-
ZATIONAL UNITS IN ONE DEVELOPMENT TEAM) are explained in detail. The explanation
of all other pattern candidates can be found in Appendix B.

5.2.1. Create T-Shaped People

Pattern Overview
ID P-01
Name CREATE T-SHAPED PEOPLE

Alias -
Summary T-shaped professionals are generalists as well as special-

ists [45]. With them interdisciplinary cooperation can be
evolved. This is why in feature - but not skill-oriented
teams, t-shaped people are needed.

Type Communication
Binding Nature Recommended

Example

In one team several competencies are distributed, but colleagues cannot backup each other
because they do not understand the work of the others.

Context

In agile development a new, broad distribution of knowledge can lead to more success
(cf. [35]).

Problem

• C-124: How to share the knowledge in the team to back-up failures?

• C-125: How to distribute competencies across the team?

• C-135: How to avoid knowledge isles?

56



5.2. Good Practices

Forces

• General as well as specialist knowledge requires the motivation to be taken by the
employees and is challenging, especially for long-time experienced experts as they
do not recognize the need for broad knowledge.

Solution

Train developers to be both, generalists in their subject as well as experts in their specific
domain. That requires open-minded developers and the motivation for training sessions.

Consequences

Benefits:

• Team members should be able to share tasks domain-independently in their team
and be able to support each other, if bottlenecks occur.

• Increases the possibilities to substitute colleagues, while they are not available.

• Higher motivation due to various possible tasks.

Liabilities:

• Requires training for employees and costs capacity (investment costs).

See also

M-03: TRAVELLING

M-06: SHADOWING

57



5. Observing and Identifying Recurring Concerns and Good Practices

5.2.2. Community of Practice

Pattern Overview
ID CO-01
Name COMMUNITY OF PRACTICE

Alias Community
Summary A COMMUNITY OF PRACTICE is an informal network be-

tween development teams regarding a special domain. The
domain can be technical, agile, or other.

Example

Several colleagues from different teams complain about a missing network.

Context

Agile working employees may seek for interaction and discussion with like-minded peo-
ple (cf. [47]). Furthermore, knowledge management across different development teams
must be guaranteed. Knowledge sharing in feature-oriented development teams differs
from the knowledge sharing in skill-oriented development teams.

Problem

• C-5: How to facilitate shared context and knowledge?

• C-26: How to align and communicate architectural decisions?

• C-27: How to manage and share knowledge about system components and their dependen-
cies?

• C-38: How to facilitate standardization across agile teams?

Forces

• Colleagues must be motivated to work in a COMMUNITY OF PRACTICE.

• If the participants do not use the COMMUNITY OF PRACTICE, or not enough people
participate at all, the COMMUNITY OF PRACTICE makes less sense.

58



5.2. Good Practices

Solution

A COMMUNITY OF PRACTICE can be founded by any interested person regarding a spe-
cific topic. Everyone can be part of it, the participation is voluntary. Usually the members
of a COMMUNITY OF PRACTICE are from different development teams. A COMMUNITY

OF PRACTICE is no team and consequently does not need to work with an own backlog.
However, they can establish their own backlog or use any other tools, if needed. Tasks are
solved directly together or handed over to development teams if they require more time
or are too complex. The participants meet frequently and can have different kinds of meet-
ings: workshops, work meetings, stand ups, pitches, and more. Also informal meetings
off the job are possible, especially when the domain is not directly regarding the job. The
COMMUNITY OF PRACTICE-Coordinator organizes the meetings.

A COMMUNITY OF PRACTICE works well for knowledge-management and networking
across feature teams. Nevertheless, a COMMUNITY OF PRACTICE is not authorized to reach
decisions automatically effective for all development teams (cf. [47]).
Main responsibility of the COMMUNITY OF PRACTICE is the knowledge as well as compe-
tency management, the enhancement of processes and tools, and the discussion of over-
arching topics. With their work they support the feature teams with new methods, tools,
and processes. As Paasivaara and Lassenius [47] analyzed, a COMMUNITY OF PRACTICE

can be used for continuous improvements.

Consequences

Benefits:

• Given foundation for networking.

• Higher transparency because topics are discussed in the open COMMUNITY OF PRAC-
TICE, instead of closed circles and everyone is invited to join.

• Facilitates knowledge management, because all interested and experienced colleagues
come together.

• Solves problems with the help of others.

• Broad knowledge base and memory for everyone.

Liabilities:

• Time intensive because of additional meetings.
Possible solution: Save time in every sprint for the participation. At the case organi-
zation, 10 percent of their sprint time was saved.

See also

M-01 EMPOWERED COMMUNITY OF PRACTICE

59



5. Observing and Identifying Recurring Concerns and Good Practices

5.2.3. Empowered Community of Practice

Pattern Overview
ID M-01
Name EMPOWERED COMMUNITY OF PRACTICE

Alias Core Community of Practice
Summary Additional to the characteristics of a COMMUNITY OF

PRACTICE (see pattern candidate CO-01 in 5.2.2), the EM-
POWERED COMMUNITY OF PRACTICE is obligatory for all
selected development teams and comes with additional
rights and regulations.

Example

The management fears that too many different expensive tools are used. They complain
how various feature teams could be motivated to collaborate during the selection of tools.

Context

A usual COMMUNITY OF PRACTICE may not have enough power to justify far-reaching
decisions. Regulatory standards suffer for consistent and powerful instruments to be en-
forced. Furthermore, a COMMUNITY OF PRACTICE with required but tedious topics may
have not enough participants.

Problem

• C-5: How to facilitate shared context and knowledge?

• C-26: How to align and communicate architectural decisions?

• C-27: How to manage and share knowledge about system components and their dependen-
cies?

• C-38: How to facilitate standardization across agile teams?

• C-118: How to handle regulatory standards?

Forces

• Usually a COMMUNITY OF PRACTICE works democratic. This is difficult if regulatory
and cost intensive decisions are demanded.

• Responsibility of executives or workers with the relevant skills is required. Espe-
cially the role of the leader must be picked wisely in this extension.

60



5.2. Good Practices

Solution

The agile architecture decision-making model by Uludağ et al. [71] (see Figure 5.8) was
used to decide whether a community is a COMMUNITY OF PRACTICE or an EMPOWERED

COMMUNITY OF PRACTICE. Topics with a wide scope (number of development teams
influenced by the topic) and high costs or regulations are domains for an EMPOWERED

COMMUNITY OF PRACTICE, while all others are for a usual COMMUNITY OF PRACTICE. If
needed, an EMPOWERED COMMUNITY OF PRACTICE is established by management.

Obligatory 
Empowered 
Communities 
of Practice

Voluntary 
Communities of 

Practice

Scope
# of Feature Teams

Intern Regulations,
Costs

Tooling
Voluntary 

Communities of 
Practice

Voluntary 
Communities of 
Practice

Security

AI

Test and 
Validation

Architecture

Agile

Figure 5.8.: Decision making model process with exemplary domains [71]

Usually, the EMPOWERED COMMUNITY OF PRACTICE works democratically. Some regu-
latory and cost intensive decisions require responsibility of executives. These should be
made in the EMPOWERED COMMUNITY OF PRACTICE now. Consequently, a high respon-
sibility follows. The leader is picked wisely by the management. He is an executive or
skilled and experienced worker. The leader coordinates the EMPOWERED COMMUNITY OF

PRACTICE and is empowered to take decisions valid for all development teams in team-
work with all participants.

Every selected development team sends at least one developer to the EMPOWERED COM-
MUNITY OF PRACTICE. The participation is obligatory. An EMPOWERED COMMUNITY OF

PRACTICE can help to guarantee the compliance of the intern regulations and standards,
as well as knowledge management in a feature-oriented structure.

61



5. Observing and Identifying Recurring Concerns and Good Practices

Consequences

Benefits:

• Participation of all development teams in the decision making process is guaranteed.

• Guarantees networking through all selected feature teams.

• Guarantees a foundation for knowledge management for specific domains.

• Improves the quality for valid standards because experts are included in the decision
making and standards are valid for the whole department.

Liabilities:

• Obligatory activities mostly have a lower motivation rate.

• Time intensive for the participants, because more participants are required and long
discussions can appear.

See also

CO-01: COMMUNITY OF PRACTICE

62



5.2. Good Practices

5.2.4. Travelling

Pattern Overview
ID M-03
Name TRAVELLING

Alias Personnel Exchange
Summary Developers change their team for one sprint to get deeper

insights into technical and agile work of another develop-
ment team.

Example

Two developers want to show each other their daily work.

Context

Single developers want to gain knowledge about the technical work of another team and
wish to get insights in their agile work.

Problem

• C-7: How to deal with incorrect practices of agile development?

• C-38: How to facilitate standardization across agile teams?

• C-59: How to establish a common understanding of agile thinking and practices?

• C-122: How to find time for training?

Forces

• If the regular development team and the visited development team do not have the
same sprint length and the sprint does not end at the same time, the traveler has an
overload of work in between the times.

• Both teams may recognize a lack of competencies in their team during this sprint.
On the other hand, especially for the planned tasks in the sprint, experts can travel
to support the team.

63



5. Observing and Identifying Recurring Concerns and Good Practices

Solution

Two developers can change positions for one or more sprints. The travelling is usually
organized by the developer himself or the scrum master.

Developer A from team Alpha and developer B from team Beta normally do not work
directly together. Their scrum masters propose them to change teams for one sprint length
to become more familiar with the contents of the other one. They decide to take the chance
and in one sprint they change teams to get insights in the work of the other one. That
means for the duration of one sprint A develops in team Beta and B works in team Alpha.
A is part of all meetings of the Beta team, while B is part of all meetings of the Alpha
team during this time. After the sprint, they write down their experience and organize a
meeting with all team members of the Alpha as well as of the Beta team. Also the product
owners and the managers are invited. In the meeting they present their experience and
give advice how the teams could change parts of their work and try to learn from one
another. Especially the experienced differences between both teams regarding agile work,
advantages and disadvantages they discovered, and their lessons learned are discussed.

Variants

• Developers can be sent to another team to support during busy times without having
an exchange partner.

• Travelling can also be for longer, for example if developers are bored by their own
work and want to get insights into another department.

Consequences

Benefits:

• Gain of knowledge about the technical work of other teams.

• Discover agile work of other development teams.

• Understanding how different work methods can be adapted.

• Possible support, if the partner is more experienced in the needed domain.

Liabilities:

• Loss of men-power during the sprint, if the partner is not as experienced in the
needed domain.

See also

M-06: SHADOWING

64



5.2. Good Practices

5.2.5. Synchronized Calendar

Pattern Overview
ID V-04
Name SYNCHRONIZED CALENDAR

Alias One Calendar Approach, Synchronized Sprints
Summary Several development teams share their frequent meeting

times and locations to facilitate the coordination with other
development teams.

Example

A COMMUNITY OF PRACTICE was installed and the two creators complain when they
should conduct regular meetings. They do not know the frequent meeting times of the
other feature teams.

Context

To facilitate SHADOWING (M-06), coordinate the participation in a COMMUNITY OF PRAC-
TICE (CO-01) or a EMPOWERED COMMUNITY OF PRACTICE (M-01), share meeting rooms,
allow TRAVELLING (M-06), and evolve transparency, a shared calendar can be used.

Problem

• C-78: How to synchronize sprints in the large-scale agile development program?

Forces

• The calendar should be always up to date, so every team is responsible to update the
calendar.

• Responsibility for sharing in the different development teams, but teams may not
prioritize the updating of the calendar so the coordination can be difficult.

• The room management may fail if not enough conference rooms are available and
less time slots for meetings, especially longer ones can be offered.

Solution

All development teams share their meeting times (including locations) in an accessible
calendar and update the calendar if data changes. Every color represents one team (see
Figure 5.9). All teams work in sprints with a duration of two weeks, so meeting dates to
sprint change times are shown by dividing the table in even and odd calendar weeks.

65



5. Observing and Identifying Recurring Concerns and Good Practices

Figure 5.9.: Several teams share their meeting times in one calendar (daily scrum meeting,
refinement meeting, planning meeting, review meeting, retrospective meeting)

Variants

• The synchronizing of sprints through a shared calendar adds more value to the com-
munication during sprints. Several teams can synchronize their sprint length and
sprint change times to increase their cooperation. The organization can be done
central or local, depending on the preferences of the development teams and the
management. Central organization facilitates the room management and the time
management for cooperation (e.g. COMMUNITY OF PRACTICE, TRAVELLING, and
more).

• Additional matching of sprint times (beginning, end, and duration) with suppliers.

Consequences

Benefits:

• Higher transparency because the meeting times are visible for everyone.

• Fast information transfer to stakeholders and interested members.

Liabilities:

• Responsibility for the care of the calendar is an additional work load.

66



5.2. Good Practices

5.2.6. Don’t Combine Developers from Different Organizational Units in One
Development Team

Pattern Overview
ID A-01
Name DON’T COMBINE DEVELOPERS FROM DIFFERENT ORGANI-

ZATIONAL UNITS IN ONE DEVELOPMENT TEAM

Alias -
Summary Developers from different organizational units sometimes

work together in one development team. This was experi-
enced as a negative practice and should be avoided.

Example

A new feature team is created with developers from different organizational units.

Context

During the transformation team structures have been reorganized, but the disciplinary
structure was unchanged.

Problem

• C-142: How to unite developers from different organizational units in one development team?

Forces

• Changes in the organizational structure result in an administrative effort.

General Form

A new team is established. However, the organizational structure of the team is not reor-
ganized. That means developers have different managers, work on different budget, have
different work times, and more. Political discussions follow their daily life.

Consequences

Benefits:

• Fast personnel support if needed.

67



5. Observing and Identifying Recurring Concerns and Good Practices

Liabilities:

• Political discussions rule the daily work life.

• Differences between the work units may lead to different work conditions (budget,
room situation, personal preferences by the manager, and more).

• Developers do not feel united.

Revised Solution

When developers are reorganized in a new team structure, their disciplinary reorganiza-
tion should follow too. That means, that all developers in the development team should
have the same disciplinary manager and the same work conditions at their work place.

If the combination of developers in one organizational unit is not possible, it is recom-
mended to facilitate their cooperation. A shared office as well as project rooms to sponta-
neously get together simplify their teamwork.

68



6. Discussion

This chapter outlines the key findings of this bachelor thesis. The most important scaling
practices, found concerns, and good practices to address these are explained. Additionally,
we present the effects of the adoption of agile development at the case organization. Later
on, this chapter demonstrates the limitations of this work.

6.1. Key Findings

The following three scaling practices were identified as most important: First a dedicated
work unit for agility, second COMMUNITY OF PRACTICE (CO-01) and their extension EM-
POWERED COMMUNITY OF PRACTICE (M-01), and third a Product Owner Board. Fur-
thermore, several concerns within large-scale agile transformation were investigated. We
classified 54 as recurring. 12 of them were not investigated in previous research, but first
through this study. Moreover, 17 success factors were documented as pattern candidates.
One Principle, two Coordination Patterns, seven Methodology Patterns, six Viewpoint Pat-
terns and one Anti-Pattern were found. Last, the impact of the new working at the case
organization is discussed.

Scaling Practices

Three scaling practices have been identified as most important and analyzed:

Dedicated work unit for agility
A dedicated work unit for agile methodology supervised the agile work in the entire ve-
hicle dynamics department. Guidance for all agile teams was provided by this work unit,
for example training, workshops, and question times. In addition, this unit coordinates
the scrum masters of all teams, technical as well as disciplinary, and guarantees close co-
operation and shared focus. As a previous case study in another department showed,
"comprehensive training courses and workshops ease the adoption since they provide a
shared understanding of new practices, roles, and responsibilities" [68]. The referred spe-
cial work unit enables this understanding and guarantees this also in future. Work units
for agility were also identified before by Uludağ and Matthes [70] as Methodology Pattern
Candidate "Agile Transition Team" [70]. The use of such a team was analyzed by them as
being controversial and was also identified as Anti-Pattern [70]. We identified a dedicated
work unit for agility as success factor during the transformation.

69



6. Discussion

COMMUNITY OF PRACTICE and EMPOWERED COMMUNITY OF PRACTICE

A COMMUNITY OF PRACTICE is used to guarantee knowledge management and network-
ing, while encouraging employees to open discussions. It combines employees from mul-
tiple development teams [13] in an informal network.
Additionally, an EMPOWERED COMMUNITY OF PRACTICE is an extension of the previously
mentioned COMMUNITY OF PRACTICE. Instead of voluntary, this one is obligatory for se-
lected development teams and comes with additional rights and regulations.
Paasivaara and Lassenius [47] identified characteristics of a successful COMMUNITY OF

PRACTICE [47], which we previously compared to our adoption of them (see Table 4.4). In
the case organization, several usages of an EMPOWERED COMMUNITY OF PRACTICE reg-
ulated the most expensive and far-reaching domains, as security or testing. The demand
for this extension seems to be new. One reason could be that the higher management lev-
els want to take the opportunity for a shared responsibility with the development teams.
They experience this through the role of a coordinator who is enabled to make decisions
in extreme situations and coordinates the activities. The coordinator in a COMMUNITY OF

PRACTICE usually is selected by the participants [47], whereas in an EMPOWERED COM-
MUNITY OF PRACTICE, the higher management levels select the coordinator, and give him
the power. The organization recommended that mainly executives can be coordinators in
such practices, while a COMMUNITY OF PRACTICE shares the responsibility on all levels.
Several uses of a COMMUNITY OF PRACTICE were recognized as a common scaling prac-
tice, which was also found by Kalenda et al. [35] and Paasivaara and Lassenius [47] in
their empirical research. They rated them as a useful way to network, share knowledge,
and motivate the employees by involving them in shaping their daily work life [35, 47].
A COMMUNITY OF PRACTICE offers high value and potential to achieve technical excel-
lence [73]. The EMPOWERED COMMUNITY OF PRACTICE as extension of a COMMUNITY

OF PRACTICE was first documented in recent research by Uludağ and Matthes [70] and is
highly unpopular in literature.

Product Owner Board
The organization is scaling the role product owner in an unconventional way, even though
this role often is used when scaling agile organizations in literature [14] and in several
frameworks like LeSS (scaling the product owner role by scaling the product and ensuring
an overall view [64]) or SAFe (here, a product owner owns a team backlog, while a product
manager owns a program backlog [56]). The Product Owner Board is a circle including all
product owners and higher management levels. They regulate work of product owners by
using an additional backlog to prioritize tasks which are not related to one single feature
but relevant for several features. Furthermore, such a board guarantees frequent network-
ing for all product owners. Product Owner Boards are not listed as good practice by this
work, since its success is not yet validated. Risk is that an additional backlog confuses
work of development teams. Moreover, higher management levels can misunderstand
their role since power given through the Product Owner Board is high. Their prioritiza-
tion influences the work of all development teams - independently from the team-specific

70



6.1. Key Findings

feature and their backlog. Due to the fact that higher management levels are not able to
know the current details of the backlogs of single development teams at all times. The goal
is to have a shared backlog in future and further potential of a Product Owner Board lies
in the engineering of this. Currently, several development teams share one backlog when
having a related feature. To have a proper overview they use tags (e.g. project names or
vehicle parts) to organize it. In contrast to the Product Owner Board, a "Requirements
management scaling" [35], identified by another case study by Kalenda et al. [35], orga-
nized and prioritized all tasks first in one shared backlog and pulled them later in single
team backlogs for implementation of the tasks.

No common scaling practices regarding meetings for all development teams were used
at the department. Kalenda et al. [35] for example identified "Scrum of Scrums", "Scaled
Sprint demo/review", "Scaled planning", and "Scaled retrospective" [35] as scaling prac-
tices in literature and their research case. At the organization, some teams decided to
share their sprint planning, sprint review, and sprint retrospective when having a com-
bined feature, thus experiencing benefits from open discussions and information sharing.
The demand for common meetings may arise when having a common backlog [48]. Nev-
ertheless, meetings were recognized as an important part, especially in large-scale agile
software development. Interviewees from piloting projects stated an increase in meetings
when collaborating with other agile teams. As Moe et al. [43] mentioned, scheduled meet-
ings are needed to coordinate in large-scale agile development and lead to more success of
the overall agile program - particularly during adaption to agility. As mentioned before,
the individual solution at the organization was that development teams decide on their
own whether they have a need to collaborate with other development teams in meetings
and therefore organize them together. Additionally, they use one common calendar to-
gether in which all meeting dates are shared to facilitate communication (see also pattern
candidate V-04: SYNCHRONIZED CALENDAR).

Also, no strict implementation of a large-scale agile development framework, as the ones
presented in Chapter 2.3.4, was conducted in the case organization. The department de-
cided to use an individual solution with an own approach. This decision was mainly
influenced by experiences by a partner department which strictly uses LeSS and found
some limitations due to this. In the past decades, many studies have shown that adopting
a more or less strict framework can lead to success (cf. step by step pattern language [25],
adopting SAFe [46], adopting LeSS [68], and limits while adopting LeSS [48]). In contrast,
Kalenda et al. [35], Fuchs and Hess [27], Rolland et al. [54] as well as this empirical study
suggest to customize adoption and scaling of agile methods as far as possible in order to
introduce a more appropriate large-scale agile development. This is consistent with focus
on agile mindset in individual solutions [15].

71



6. Discussion

Recurring concerns within large-scale agile transformation

Observations, interviews, and feedback talks highlighted concerns which the different
roles at the organization faced in their everyday work life. We clustered all found concerns
in several categories. Most concerns identified are regarding culture and mindset during
agile transformation. The new focus on agile values and principles as a change in mind-
set were especially challenging in collaboration with traditional stakeholders and partner
departments. Scrum masters more often mentioned wrong understanding of roles, right
adaption of agile mindset, handling of false rumors, and personal doubts about employ-
ees - obviously concerns regarding the mindset and agile methodology. Also, Harders [30]
identified many concerns for scrum masters are related to their mindset. Second leading
is the category requirements engineering. Moreover, nine concerns in each of the follow-
ing categories were identified: communication and coordination, software architecture,
project management, and knowledge management. Management stated potential loss of
knowledge and competencies as a particular fear - also before knowing whether loss of
knowledge would come or not. Kuusinen et al. [37] found that knowledge management in
scaled agile development is easier within teams, while more difficult outside a team. Ad-
ditionally, the new style of working led to concerns for developers. For example, growing
responsibility, need for more self organization, and fast growth of their own competencies
was identified as a stress factor for some of them.
Our empirical research revealed 25 new concerns. Of these, 12 are classified as recurring:

C-116: How to collaborate with the traditional world?
C-117: How to handle false rumors?
C-118: How to handle regulatory standards?
C-119: How to coordinate imperfect room situations?
C-120: How to guarantee the right understanding of roles?
C-121: How to reduce sideline activities?
C-122: How to find time for training?
C-123: How to simplify a complex tooling environment?
C-124: How to share the knowledge in the team to back-up failures?
C-125: How to distribute competencies across the team?
C-126: How to find the same wording for agile terms?
C-127: How to recognize the need for self-discipline?

The correlation to existing literature has been explained in detail in Chapter 5.1. Unlike
related research, this case study interviewed and observed different roles and concerns
employees faced. The differentiation of various roles and their experiences was carried
out first by our study.

72



6.1. Key Findings

Success factors within large-scale agile transformation

To address the observed concerns several good practices have been found and analyzed:
Overall, candidates for two Principles, one Coordination Pattern, seven Methodology Pat-
terns, six Viewpoint Patterns, and one Anti-Pattern were investigated.
We found that management demanded ways for knowledge sharing and ensuring com-
petencies across all teams, which were established in several uses of the COMMUNITY OF

PRACTICE (CO-01) and EMPOWERED COMMUNITY OF PRACTICE (M-01). Need for net-
working was also analyzed before [44]. Fuchs and Hess [27] detected the "Coordination of
different organizational worlds" [27] as a barrier. Since a COMMUNITY OF PRACTICE was
open for both, agile as well as non-agile participants, it facilitated the discussion of their
concerns. COMMUNITY OF PRACTICE was identified as a good practice in other literature
too [47, 73]. Uludağ et al. [71] also analyzed the EMPOWERED COMMUNITY OF PRACTICE.

For inter-team coordination, SYNCHRONIZED CALENDAR (V-04) helped to organize collab-
orations. Additionally, TRAVELLING (M-03) and SHADOWING (M-06) secured the training
of agile and technical developing between teams. Intra-team coordination was facilitated
by BACKLOG GROOMINGs (CO-02) as well as BURNDOWN CHARTs (V-06), and the retro-
spective method STARFISH (V-05). As retrospective meetings are called the most important
of all meetings [20], they had a high priority. Long-term as well as short-term technical
and non-technical goals were coordinated by teams with a PROJECT PLAN (V-03), which
are also used in traditional development, and a ROADMAP (V-02).

To guarantee the competency-advancement the principle CREATE T-SHAPED PEOPLE (P-
02) was developed, and RADAR CHARTs (V-01) were established. Before starting the trans-
formation through PILOTING (M-02) first experiences were gained in the department (cf.
[18, 27, 32]). This showed the confrontation with traditional working teams and depart-
ments. To facilitate the involvement of non-agile parts of the company, as management or
stakeholders, SHARE THE CHANGE (M-04) helped to inform everyone the same way about
the transformation and changes in their daily work life. The communication of changes
was also identified as a success factor by Dikert et al. [18]. They mentioned a higher trans-
parency as an important reason. Stakeholders should COME TO OUR DEMOS (M-05), to get
insights of the current work communicate via the team-mailbox (M-07: SHARE A MAIL-
BOX). Consequently, transparency about work and team-structure increased(cf. [18]). Only
one candidate for Anti-Pattern was identified: A-01: DON’T COMBINE DEVELOPERS FROM

DIFFERENT ORGANIZATIONAL UNITS IN ONE DEVELOPMENT TEAM. This led to an unequal
treatment of different members in a development team.

Additionally, developers, scrum masters, and product owners from teams where man-
agers participated at training courses on agile development and mindset mentioned this
as a success factor, because understanding of managers increased after coaching. Equally,
Kalenda et al. [35] as well as Dikert et al. [18] identified support by management as a must.

73



6. Discussion

Case organization

Overall, satisfaction of the employees increased when using agile work methods, 13 of
14 interviewees would prefer to continue agile development instead of returning to tra-
ditional work methods, even though new concerns occurred and developing agile was
experienced as partly challenging. Although the development teams did not work com-
pletely self-organizing newly gained responsibility was also a motivator for developers
and improved their worklife.

To improve agile work at this automotive organization, a rewarding system which is not
individual but team-oriented could motivate development teams, as Dikert et al. [18] rec-
ognized a not team-oriented rewarding model as a concern. Implementation of such a sys-
tem was not yet possible because workers council called for an individual evaluation for
every single employee. Additional to the rewarding system present such a team-oriented
rewarding system could be established. Also, the integration of personal advancement
and agile goal of every single developer should be integrated. On the other hand, support
of management must grow during the next months. Training and workshop sessions are
already organized to improve agile mindset in management.

6.2. Limitations

Since this thesis used the design science approach, as explained in Chapter 1.3, limitations
in both conducted fields result (literature research and qualitative study at one case orga-
nization). First limiting factor is the literature research limited by time. Thus, the main
interest of this thesis was empirical research at the case organization and the literature
research was conducted to get an overview about existing literature, existing state of re-
search and similar cases and experiences. Since for this thesis a five-months case study
was conducted, we were only able to observe the initial phase of the transformation and
progression of the pilot project. Additionally, research for a longer period of actual work-
ing agile would offer a comparison between the current and the next states. Instead we
had the chance to analyze the transformation itself with its concerns and success factors.
So, the second limitation factor is the limited time frame for the case study. As the em-
pirical research was only done at one specific and individual case organization restricted
results were found and the results cannot be generalized automatically. To gain general-
izability and more reliable results close comparisons to existing research were done. In
order to prevent negative factors only dedicated to this company, observations at another
agile developing department of this company were done. We compared them to literature
and found no significant influences. The decision for qualitative instead of quantitative re-
search limited the generalizability. Instead we were able to found rich in-depth details. As
the goal of this thesis was to get deeper insights instead of a broad overview only a limited

74



6.2. Limitations

amount of interviews at the organization was conducted. Multiple different persons in
different roles have been interviewed and feedback talks with several more stakeholders
have been conducted. Even though, only the personal experiences of the participants are
reported. Further, we were only able to document pattern candidates, but no pattern itself.
This was because the study was conducted at only one company. Not only the validation,
but also the evaluation of our pattern candidates is missing, because that was beyond the
scope. We presented our results to the scientific as well as to the technical stakeholders and
discussed the consequences of our work. Nevertheless, we did no organized evaluation,
which would have been needed to fulfill the design science approach, because this was
beyond scope of the present study.

75



6. Discussion

76



7. Conclusion

This last chapter summarizes the main findings regarding the three research questions and
gives an outlook on possible future work.

7.1. Summary

Since popularity of agile mindset, with its four values and 12 principles, is increasing,
so is the demand for case studies in this domain. This is especially true in large-scale
agile development, although this was not what agile methodologies were first designed
for [22, 49]. This thesis aimed to investigate transformation to a cross-functional large-
scale agile development, while analyzing occurring concerns, and to identify used good
practices to address these. To summarize findings of this thesis, in the following, research
questions mentioned in Chapter 1.2 will be answered here recapitulatory.

Research Question 1: How does the large-scale agile transformation take place
at the case organization?

The transformation from traditional software development methods to scaled agile de-
velopment methods was investigated for five months. This was performed in a software
development department in the field of vehicle dynamics development of an OEM (see
Chapter 4). Without using a scaling framework the organization adapted agile develop-
ment (see Chapter 4.2). Three main scaling practices were used: First, a special work unit,
similar to an agile transition team, focusing on agility was established to coordinate agile
development and work of the scrum masters. Second, COMMUNITY OF PRACTICE and
EMPOWERED COMMUNITY OF PRACTICE were created to guarantee knowledge exchange
and facilitate networking across development teams. Third, a Product Owner Board was
installed. This circle, including all product owners and the higher management, regu-
lated the work of product owners and managed an additional backlog for all development
teams with especially important tasks. Additionally, more practices were registered to
implement and coordinate agile transformation.

Research Question 2: What are concerns within the large-scale agile transfor-
mation at the OEM?

The second research question aims to investigate what concerns occurred during the trans-
formation explained above. With respect to the 79 challenges by Uludağ et al. [67], 25

77



7. Conclusion

more concerns were found during 14 interviews with different stakeholders. These are
categorized and listed in Chapter 5.1 (see Figure 5.4 and 5.5). Overall, fifty-four recurring
concerns were investigated, 12 of them were new discovered by us. Additional concerns
were found, but characterized as not recurring. Four scrum masters, two product owners,
three managers, and five development team members were interviewed. After analysis,
we found that they faced different concerns throughout transformation. Also, the process
of concerns was documented (see Figure 5.1). Summarizing, in the beginning mindset
change and understanding of methodologies were the most important concerns, while
later collaboration with non-agile dependencies as well as knowledge and competencies
management gained relevance.

Research Question 3: What are good practices to address the observed con-
cerns within the large-scale agile transformation at the OEM?

To address observed concerns, 17 good practices have been identified and probed (see
Chapter 5.2). Based on observation and interviews, these were documented as pattern
candidates (see Chapter 2.1). We identified one Principle, two Coordination Patterns, one
Anti-Pattern, seven Methodology Patterns, and six Viewpoint Patterns. These have been
used by the development teams to shape agile development. A selection of most important
pattern candidates was explained in Chapter 5.2, whereas additional pattern candidates
can be found in the Appendix B. To sum up, success factors included training sessions,
knowledge transfer, a conscious decision making process with teams, and slow scaling of
agile development.

7.2. Future Work

As mentioned previously, this thesis was limited to a time frame of five months, so fur-
ther work should investigate progress of transformation for a longer time period. The
process of concerns over a longer scope of time could add value to current research. Also
future researchers should be encouraged to compare the investigation of identified good
practices in other organizations. As explained during the limitations of this thesis the
evaluation of our pattern candidates as well as their validation to make them patterns
remains. Both would add interesting value to current research. Furthermore, a stronger
involvement of stakeholders which have dependencies with the case department could
be interesting. During observation, some misunderstanding between agile and non-agile
teams and a waste of work were realized because tasks were done twice. The complex-
ity of change was felt on both sides, as stakeholders mentioned during feedback talks. A
deeper view on stakeholders would add another insight on large-scale agile development
in future work and highlight the understanding of their concerns. In addition to the sug-
gested research in practice, moreover, a comparison between existing literature regarding
scaling practices with and without a special framework would be interesting.

78



A. Appendix

The following chapter presents the questionnaires of the semi-structured interviews. First
the general questions which all interviewees were requested to answer are presented, sec-
ond the questionnaire which was special for the managers and third the questionnaire
for the role of the scrum master, product owner and developers. Additional the resulting
concerns are presented.

A.1. Interview Questionnaire

A.1.1. General Questions

All interviewees have been asked the general questions.

Background

1. What is your role in the agile software development?

2. How long have you been working in the field of agile software development?

3. How did you discovered agility?

4. How high is the level of scaling currently?

5. How many persons in your team are included in the agile development?

6. Who is not involved in the agile development?

7. Why is not everyone involved in the agile development?

8. What roles are included in your team?

9. How do you rate the cooperation within your team?

10. How do you rate the cooperation within the department?

11. What dependencies does your team has?

79



A. Appendix

Transformation

1. What was the primary motivation for the transformation from you point of view?

a) Improve Business/IT alignment
b) Improve predictability of delivery
c) Improve productivity
d) Improve flexibility
e) Manage changing priorities
f) Reduce project risks
g) Reduce project costs
h) Improve software quality
i) Improve software maintenance
j) Improve team moral

k) Reduce time-to-market
l) Maximize value

m) Improve coordination of distributed teams
n) Improve project visibility

2. Who motivated you for the agile development?

3. How did they motivated you?

Challenges and Best Practices

1. What challenges did you face because of the agile development until nowadays?

2. How did you addressed the recurring challenges? What methodologies, practices or
visualizations have been used?

Retrospective

1. What advantages arose since the start of the agile development?

2. What disadvantages arose since the start of the agile development?

3. Would you prefer to continue agile development or go back to traditional work meth-
ods?

80



A.1. Interview Questionnaire

A.1.2. Questionnaire for Manager

The managers were requested to answer some more role-specific questions.

Transformation

1. Who motivated your team for the agile transformation?

2. How have your team been motivated?

3. How is the agile transformation rolled out?

4. How do you scale the agile development?

Challenges and Best Practices

1. What challenges did you face because of the agile development until nowadays?

2. What role-specific concerns did you monitor?

3. How did you addressed the recurring challenges? What methodologies, practices or
visualizations have been used?

4. What good practices have you recognized?

5. What challenges could not be solved until nowadays?

Success Stories

1. What are current success stories?

2. What are important factors for the success of the actual program?

3. What advise do you have for other agile programs?

4. What should be avoid during agile transformations?

81



A. Appendix

A.1.3. Questionnaire for Product Owner, Scrum Master and Developer

Concerns and Best Practices

During the second part of the interview session a selection of 56 of the 79 challenges found
by Uludağ et al. [67] have been presented to the interview partner. If a challenge was
annotated as occurring by the interviewee, they had the chance to mention when and how
often the concern was recognized. This is the selection:

• C-1: How to coordinate multiple agile teams that work on the same product?

• C-2: How to consider integration issues and dependencies with other subsystems and teams?

• C-4: How to deal with doubts in people about changes?

• C-5: How to facilitate shared context and knowledge?

• C-6: How to manage technical debts?

• C-7: How to deal with incorrect practices of agile development?

• C-8: How to ensure that non-functional requirements are considered by the development
team?

• C-9: How to find the right balance between architectural improvements and business value?

• C-10: How to create precise requirement specifications for the development team?

• C-13: How to share a common vision?

• C-14: How to create a proper upfront architecture design of the system?

• C-15: How to elicit and refine requirements of end users?

• C-16: How to deal with increasing workload of key stakeholders?

• C-17: How to establish self-organization?

• C-18: How to split large and complex requirements into smaller requirements?

• C-19: How to deal with internal silos?

• C-20: How to facilitate communication between agile teams and other teams using traditional
practices?

• C-21: How to manage dependencies to other existing environments?

• C-22: How to balance short-term and long-term goals?

• C-23: How to establish a common scope for different stakeholder groups?

82



A.1. Interview Questionnaire

• C-24: How to create team spirit and trust among agile teams?

• C-25: How to manage and integrate heterogeneous subsystems of different development
teams?

• C-26: How to align and communicate architectural decisions?

• C-27: How to manage and share knowledge about system components and their dependencies
with stakeholders?

• C-28: How to communicate business requirements to development teams?

• C-31: How to deal with geographical distance between agile teams?

• C-33: How to build trust of stakeholders in agile practices?

• C-35: How to define clear and visible priorities?

• C-37: How to create lightweight documentation?

• C-38: How to facilitate standardization across agile teams?

• C-39: How to establish a culture of continuous improvement?

• C-41: How to deal with unplanned requirements and risks?

• C-43: How to enforce customer involvement?

• C-44: How to deal with communication gaps with stakeholders?

• C-45: How to deal with black and white mindsets?

• C-46: How to deal with closed mindedness?

• C-47: How to deal with higher-level management interference?

• C-49: How to deal with increased efforts by establishing inter-team communication?

• C-50: How to deal with lacking sense of ownership responsibilities for developed services?

• C-55: How to create a teamwork centric rewarding model?

• C-56: How to define clear roles and responsibilities?

• C-58: How to deal with loss of management control?

• C-59: How to establish a common understanding of agile thinking and practices?

• C-60: How to create an estimate user stories?

83



A. Appendix

• C-63: How to explain requirements to stakeholders?

• C-65: How to deal with office politics?

• C-66: How to foster technical excellence?

• C-67: How to encourage development teams to talk about tasks and impediments?

• C-69: How to establish requirements verification?

• C-70: How to define high-level requirements a.k.a. epics?

• C-71: How to measure the success of the large-scale agile development program?

• C-72: How to consider required competencies when assigning teams to tasks?

• C-73: How to deal with decreased predictability?

• C-74: How to empower agile teams to make decisions?

• C-77: How to build an effective coaching model?

• C-78: How to synchronize sprints in the large-scale agile development program?

A.2. Results

The results of the survey about the concerns have been analyzed and sorted by frequency
in Figure A.1 and Figure A.2. Labeled in green are concerns mentioned proactively (see
Questionnaire A.1.1), while labeled in orange are concerns which were selected from the
concerns presented to the interviewee (see Questionnaire A.1.3).

84



A.2. Results

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00% 100,00%

C-58 How to deal with loss of management control?; n = 11; frequency = 27%

C-59 How to establish a common understanding of agile thinking and practices?; n = 11; frequency = 64%

C-60 How to create and estimate user stories?; n = 11; frequency = 36%

C-65 How to deal with office politics?; n = 11; frequency = 36%

C-66 How to foster technical excellence?; n = 11; frequency = 9%

C-67 How to encourage development teams to talk about tasks and impediments?; n = 11; frequency = 36%

C-69 How to establish requirements verification?; n = 11; frequency = 36%

C-70 How to define high-level requirements a.k.a. epics?; n = 11; frequency = 27%

C-71 How to measure the success of the large-scale agile development program?; n = 11; frequency = 36%

C-72 How to consider required competencies when assigning teams to tasks?; n = 11; frequency = 27%

C-73 How to deal with decreased predictability?; n = 11; frequency = 18%

C-74 How to empower agile teams to make decisions?; n = 11; frequency = 27%

C-77 How to build an effective coaching model?; n = 11; frequency = 36%

C-78 How to synchronize sprints in the large-scale agile development program?; n = 11; frequency = 27%

C-116 How to collaborate with the traditional world?; n = 5; frequency = 100%

C-117 How to handle false rumors?; n = 4; frequency = 100%

C-118 How to handle regulatory standards?; n = 4; frequency = 100%

C-119 How to coordinate imperfect room situations?; n = 4; frequency = 100%

C-120 How to guarantee the right understanding of roles?; n = 4; frequency = 100%

C-121 How to reduce sideline acitivites?; n = 4; frequency = 100%

C-122 How to find time for trainings?; n = 4; frequency = 100%

C-123 How to simplify a complex tooling environment?; n = 3; frequency = 100%

C-124 How to share the knowledge in the team to back-up failures?; n = 3; frequency = 100%

C-125 How to distribute competencies across the team?; n = 3; frequency = 100%

C-126 How to find the same wording for agile terms?; n = 3; frequency = 100%

C-127 How to recognize the need for self-discipline?; n = 3; frequency = 100%

C-128 How to work without the needed support by the management?; n = 2; frequency = 100%

C-129 How to prevent old wine in new bottles?; n = 2; frequency = 100%

C-130 How to avoid a growing pressure to single developers due to the growing responsibility for the team?; n = 2;…

C-131 How to ensure networking and knowledge sharing across several development teams?; n = 2; frequency = 100%

C-132 How to handle long waiting times due to dependencies?; n = 2; frequency = 100%

C-133 How to handle seperate development (advanced development and serial development)?; n = 2; frequency = 100%

C-134 How to prioritize complex and intricate items?; n = 2; frequency = 100%

C-135 How to avoid knowledge isles?; n = 1; frequency = 100%

C-136 How to prevent justifications for being the pilot project?; n = 1; frequency = 100%

C-137 How to escalate impediments ?; n = 1; frequency = 100%

C-138 How to facilitate refinements?; n = 1; frequency = 100%

C-139 How to establish a team harmony?; n = 1; frequency = 100%

C-140 How to handle lone fighters; n = 1; frequency = 100%

C-141 How to apply test driven development without testing in the own team?; n = 1; frequency = 100%

C-142 How to unite developers from different organizational units in one development team?; n = 1; frequency = 100%

Figure A.1.: Occurring concerns sorted by frequency (Part 1)

85



A. Appendix

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00% 100,00%

C-1 How to coordinate multiple agile teams that work on the same product?; n = 11; frequency = 36%

C-2 How to consider integration issues and dependencies with other subsystems and teams?; n = 11; frequency = 27%

C-4 How to deal with doubts in people about changes?; n = 11; frequency = 45%

C-5 How to facilitate shared context and knowledge?; n = 11; frequency = 64%

C-6 How to manage technical debts?; n = 11; frequency = 45%

C-7 How to deal with incorrect practices of agile development?; n = 11; frequency = 64%

C-8 How to ensure that non-functional requirements are considered by the development team?; n = 11; frequency = 9%

C-9 How to finde the right balance between architectural improvements and business value?; n = 11; frequency = 18%

C-10 How to create precise requirement specifications for the development team?; n = 11; frequency = 45%

C-13 How to share common vision?; n = 11; frequency = 18%

C-14 How to create a proper upfront architecture design of the system?; n = 11; frequency = 18%

C-15 How to elicitate and refine requirements of end users?; n = 11; frequency = 36%

C-16 How to deal with increasing workload of key stakeholders?; n = 11; frequency = 18%

C-17 How to establish self-organization?; n = 11; frequency = 64%

C-18 How to split large and complex requirements into smaller requirements?; n = 11; frequency = 55%

C-19 How to deal with internal silos?; n = 11; frequency = 45%

C-20 How to facilitate communication between agile teams and other teams using traditional practices?; n = 11; frequency = 18%

C-21 How to manage dependencies to other existing environments?; n = 11; frequency = 55%

C-22 How to balance short-term and long-term goals?; n = 11; frequency = 36%

C-23 How to establish a common scope for different stakeholder groups?; n = 11; frequency = 18%

C-24 How to create team spirit and trust among agile teams?; n = 11; frequency = 55%

C-25 How to manage and integrate heterogeneous subsystems of different development teams?; n = 11; frequency = 9%

C-26 How to align and communicate architectural decisions?; n = 11; frequency = 9%

C-27 How to manage and share knowledge about system components and their dependencies with stakeholders?; n = 11;…

C-28 How to communicate business requirements to development teams?; n = 11; frequency = 9%

C-31 How to deal with geographical distance between agile teams?; n = 11; frequency = 45%

C-33 How to build trust of stakeholders in agile practices?; n = 11; frequency = 36%

C-35 How to define clear and visible priorities?; n = 11; frequency = 55%

C-37 How to create lightweight documentation?; n = 11; frequency = 73%

C-38 How to facilitate standardization across agile teams?; n = 11; frequency = 45%

C-39 How to establish a culture of continuous improvement?; n = 11; frequency = 55%

C-41 How to deal with unplanned requirements and risks?; n = 11; frequency = 64%

C-43 How to enforce customer involvement?; n = 11; frequency = 27%

C-44 How to deal with communication gaps with stakeholders?; n = 11; frequency = 9%

C-45 How to deal with black and white mindsets?; n = 11; frequency = 45%

C-46 How to deal with closed mindedness?; n = 11; frequency = 45%

C-47 How to deal with higher-level management interferences?; n = 11; frequency = 45%

C-49 How to deal with increased efforts by establishing inter-team communication?; n = 11; frequency = 45%

C-50 How to deal with lacking sense of ownership responsibilities for developed services?; n = 11; frequency = 36%

C-55 How to create a teamwork centric rewarding model?; n = 11; frequency = 27%

C-56 How to define clear roles and responsibilities?; n = 11; frequency = 45%

Figure A.2.: Occurring concerns sorted by frequency (Part 2)

86



B. Appendix

B.1. Documentation of Identified Pattern Candidates

B.1.1. Backlog Grooming

Pattern Overview
ID CO-02
Name BACKLOG GROOMING

Alias Backlog Refinement
Summary Product BACKLOG GROOMING is the continuous grooming

process of the product backlog. Product owner, develop-
ment team, and scrum master collaborate to optimize the
clear representation of the backlog.

Example

The product owner needs help with the organization of new tasks in the backlog, while the
developer do not understand the way the product owner organized their backlog before.

Context

A confusing backlog with too many tasks is neither a good base for planning meetings nor
useful for prioritization of new tasks. Furthermore, the product owner benefits from the
help of the developers and the developers increase their understanding for the product
owners work.

Problem

• C-35: How to define clear and visible priorities?

• C-67: How to encourage development teams to talk about tasks and impediments?

87



B. Appendix

Forces

• BACKLOG GROOMING showed best effect at the case organization when conducted
regular and with many participants. Result is one more time intensive meeting in
the tight schedule of all employees.

• People want so reorganize the entire backlog and split all tasks at once.

Solution

The BACKLOG GROOMING was used to organize the backlog [5]:
1. Create tasks and refine stories
2. Split large tasks into smaller ones
3. Prioritize tasks

During the observation different variants have been identified. The most common was that
the product owner already prepared step one and the development team was requested to
help him with step two. In the third step the product owner suggested his most important
next tasks grounded on long- and short-term goals (see also V-03: PROJECT PLAN) and
discussed these with the development team. Some teams also estimated the tasks and
were able to reduce this step in the planning meeting.

Variants

Backlog Refinement, Backlog Estimation

Consequences

Benefits:

• Better overview about the backlog for all team members.

• Facilitates sprint planning meetings, because the backlog is understandable as well
as known to all team members.

• Facilitates the organization of the backlog for the product owner, because the devel-
opers assisted him.

Liabilities:

• The time intensive meeting is experienced as an additional work load by some de-
velopers.

88



B.1. Documentation of Identified Pattern Candidates

B.1.2. Piloting

Pattern Overview
ID M-02
Name PILOTING

Alias -
Summary To ascertain the environment for agile development, gain

first experience and experiment a new idea a pilot project is
started.

Example

The department recognizes the new popularity of agile development and adopts agile
practices only in a few teams, because they are not sure about the practicability for their
department.

Context

To test how agile development can be adopted at the case organization sample teams start
to work agile.

Problem

• C-81: How to enable change from process to product orientation? (found by Uludağ and
Matthes [70])

Forces

• If the experiment fails, new pilots need to start.

• Pilots often need to justify in their department, for working different and creating
additional work to others without knowing whether it will improve their develop-
ment.

Solution

Organizations start a pilot, before they decide, whether agile development may be the right
solution for their needs. First individual and later scaled, several development teams start
to work agile and recognize mistakes to avoid these in the future. Additionally, success
factors are documented to use them as suggestions for future development.

89



B. Appendix

Before a pilot finishes, the outcome is not defined. That means a failing is possible and
requires a new pilot afterwards. A succeeding pilot is the positive approval for the agile
working to the management. However, the differentiation in succeeding and failing is
often difficult, because many factors influence the outcome. Consequently, all factors about
the performance of the pilot must be visible to the management.

Consequences

Benefits:

• Early experiences by pilots can be used for the transformation and help to avoid the
recurring of concerns.

• PILOTING can be used as a training for inexperienced people by using SHADOWING

(M-06).

• Fail fast, fail cheap (cf. [32]) is a motivation to fail as long as it does not influences
other projects. It motivates to fail in initial phase, which PILOTING is.

• Successful experiments motivate developer to continuously improve their work.

Liabilities:

• Time intensive, because the installation takes time.

• Failing experiments can demotivate developer.

• During PILOTING, developers often experienced the need to justify for their novel
way of working (see also C-136: How to prevent justifications for being the pilot project?).

90



B.1. Documentation of Identified Pattern Candidates

B.1.3. Share the Change

Pattern Overview
ID M-04
Name SHARE THE CHANGE

Alias Change Drive
Summary Involve all employees and stakeholders, and communicate

the process, goal and motivation of the change during a
workshop.

Example

One departments decides to adopt agile development. The management is not sure how
to communicate the changeover. A workshop series solves the problem.

Context

During a transformation the work routine for employees and stakeholders is influenced
by the change. To include all employees in change, a well-organized workshop with time
for discussion helps the employees to get insights in the transformation.

Problem

• C-4: How to deal with doubts in people about changes?

• C-59: How to establish a common understanding of agile thinking and practices?

• C-116: How to collaborate with the traditional world?

• C-117: How to handle false rumors?

• C-128: How to work without the needed support by the management?

Forces

• It takes time for stakeholders to understand the change and to find their new place
in the organization (e.g. new contact persons).

• It is cost and time intensive to inform and include all employees during the change
in a large organization.

• The performance of all workshops takes time and needs personal capacities.

91



B. Appendix

Solution

Workshop series organized by a team of employees with the direct assistance of the (higher)
management. The workshop should collect all stakeholders and motivate them to be part
of the transformation. Even stakeholders which are not directly involved in the change
should be informed at the workshop to get a higher transparency.

Possible content for the workshop:
• Show motivation for the change (why do we need a transformation?);
• who organized the transformation;
• what will change;
• what already changed;
• what will not change;
• vision;
• explain new work methods simply to the participants (to all participants, also the

ones which will not work with the new work methods);
• deviate a common roadmap.

Consequences

Benefits:

• Everyone is involved in the changeover.

• Higher motivation because all employees have a voice.

• Transparency due to the explanation of the change to everyone in the same way.

• Promote dialog between organizers of the transformation and stakeholders.

Liabilities:

• Cost as well as time intensive during the organization and implementation.

92



B.1. Documentation of Identified Pattern Candidates

B.1.4. Come to Our Demos

Pattern Overview
ID M-05
Name COME TO OUR DEMOS

Alias Visit Us
Summary All stakeholders and other interested colleagues are invited

to join the meetings of a development team. They share the
used methodology and their technical work.

Example

Stakeholders ask the team to present their outcome and invite them to present their work
done. Instead of visiting the different stakeholders at once, the team decides to invite them.

Inexperienced scrum masters ask more experienced scrum masters how their meetings are
conducted.

Context

During a transformation stakeholders lack the knowledge of the agile mindset and distrust
the agile practices, while requesting the presenting of results.

Moreover, new agile teams (developers, scrum masters, and product owners) lack agile
experience in the first sprints.

Problem

• C-7: How to deal with incorrect practices of agile development?

• C-33: How to build trust of stakeholders in agile practices?

• C-59: How to establish a common understanding of agile thinking and practices?

Forces

• Stakeholder as well as some new developer using agile practices may distrust new
development methods and do not have time to come to all meetings.

• Visitors may not understand all content which is discussed in the meetings.

93



B. Appendix

Solution

Interested Colleagues (for example inexperienced new developer, scrum master and prod-
uct owner) can join the meetings (especially the daily scrum meeting, the planning and the
review meeting) of experienced development teams to get insight not only into the techni-
cal but also the agile work (see also M-06: SHADOWING).

Managers and stakeholders should use the review meeting to get an overview of the cur-
rent work of a development team instead of request updates. To be as transparent as
possible a agenda can be sent to the visitors. Consequently, they can check, whether the
content of the review meeting is relevant for them. To get the highest possible outcome of
the meetings, demos should be well structured and easy understandable for all visitors.
The development team should think about the content which is presented previously.

Variants

• COME TO OUR DEMOS to notice the used agile methodologies.

• COME TO OUR DEMOS to get insights in our technical work.

Consequences

Benefits:

• Teams share their knowledge automatically during the demo with their stakeholders.

• Gives visitors the chance to get insights in the agile mindset. Further, they can ask
questions regarding the agile mindset direct to the agile teams.

• Saves time, which would have been used for the presentation of request updates.

• Transparency regarding all invited stakeholders.

Liabilities:

• Time intensive for visitors.

See also

M-06: SHADOWING

94



B.1. Documentation of Identified Pattern Candidates

B.1.5. Shadowing

Pattern Overview
ID M-06
Name SHADOWING

Alias Following, See and Go
Summary To get insights in the work of others, one colleague follows

another one to meetings like a shadow and observes the
colleagues work.

Example

A new colleague wants to get insights in the work of an experienced scrum master.

Context

Stakeholder, managers and others want to get insights in the work of agile teams.

Problem

• C-5: How to facilitate shared context and knowledge?

• C-47: How to deal with higher-level management interference?

Forces

• The sharing of knowledge is a time intensive task, because two parties are included:
the teacher and the learner. Resulting, time capacities of both parties are consumed
during the usual way of teaching. One solution is to have just one capacity consumed
by showing the learner what the teacher does during his job.

Solution

Interested colleagues can follow special related roles in the agile work to understand their
way of working. The person following acts like a shadow and observes meetings, without
interrupting them. Teams should not feel disturbed, so it is important that a shadow does
not interact with the teams during a meeting. The person which is followed can explain
open topics to his shadow, if needed after meetings.

95



B. Appendix

Experienced colleagues (especially scrum masters and product owners) use shadowing to
help inexperienced scrum masters and product owners to improve their work in the initial
phase of the transformation. Moreover, managers follow a scrum master or product owner.
Additionally, inexperienced developer can follow the members of a development team, or
stakeholder follow their partner.

Consequences

Benefits:

• Insights in the work without disturbing a team.

Liabilities:

• Time intensive for the shadow.

• Teams may act not as usual when the shadow participates.

See also

M-05: COME TO OUR DEMOS

96



B.1. Documentation of Identified Pattern Candidates

B.1.6. Share a Mailbox

Pattern Overview
ID M-07
Name SHARE A MAILBOX

Alias -
Summary A development team installs an own mailbox for impul-

sive assignments and requests, to facilitate the prioritiza-
tion and establish transparency for all team members and
the product owner.

Example

The developers complain that they get many requests from different stakeholders during
one sprint. They do not know how to prioritize the requests and feel lost.

Context

Development teams working for projects in the serial production, often get spontaneous,
urgent, and important requests or extra specification during a sprint. Many times, these are
addressed to single developers. Developers may not know how to prioritize the request.

Problem

• C-41: How to deal with unplanned requirements and risks?

• C-47: How to deal with higher-level management interference?

• C-49: How to deal with increased efforts by establishing inter-team communication?

Forces

• Importance of different assignments cannot be prioritized by single developers and
stress the sprint. Consequently, technical debts follow a sprint.

• Planned tasks cannot be solved because of secondary occupations.

97



B. Appendix

Solution

The development team and their product owner install a mailbox for all spontaneous re-
quests and assignments. Stakeholders are instructed to use this shared mailbox instead
of the personal mailbox of the single developers for urgent requests. The product owner
takes care of the mailbox and prioritizes new tasks into the product backlog. Potential
changes are shared in the daily scrum meeting. If the product owner cannot prioritize
alone, he asks for help in the development team and reorganizes the tasks in the backlog.

Consequences

Benefits:

• Higher transparency for the product owner because he notices all requests. Conse-
quently, all tasks are ordered in the backlog by the product owner.

• Less stress for single developers.

Liabilities:

• Work boost and potential bottleneck for a product owner, because of the effort to
prioritize the mailbox.

• Personal contact to stakeholders may slowdown for developers.

98



B.1. Documentation of Identified Pattern Candidates

B.1.7. Radar Chart

Pattern Overview
ID V-01
Name RADAR CHART

Alias Spider Chart
Summary The RADAR CHART represents the competencies in a de-

velopment team. It compares the actual and target status of
competencies.

Example

The development team does not agrees about competencies in their own team.

Context

A development team wants to compare the knowledge management and the increase of
competencies in a period or evaluate the change of development team members and uses
a RADAR CHART to rate needed competencies and available competencies.

Problem

• C-5: How to facilitate shared context and knowledge?

• C-39: How to establish a culture of continuous improvement?

• C-72: How to consider required competencies when assigning teams to tasks?

Forces

• Self-assessment may vary from developer to developer.

• The chart needs to be up to date every time to be useful.

Solution

The development team comes together to analyze which knowledge categories are needed,
to fulfill their feature in the best way. Next, they rate their own competencies in the differ-
ent needed knowledge categories. Everyone rates himself and all ratings are merges in a
team RADAR CHART (actual state). Furthermore, a competency radar chart for the product
(target state to solve the tasks regarding the product) is generated to compare both RADAR

CHARTs (see Figure B.1).

99



B. Appendix

function development

system knowledge

function reliability

architecture

diagnose analysis

needed programming languages

actual state target state

Figure B.1.: Example radar chart for the division of competences

Consequences

Benefits:

• Competencies are clarified for the product owner.

• Simplifies knowledge building for the team.

• Helps to create a ROADMAP (V-02) and optimize the distributed competencies through
an increase of knowledge management and control the progress.

• Improves the self-image of every developer.

Liabilities:

• Time intensive, because each developer must categorize his competencies.

See also

V-02: ROADMAP

100



B.1. Documentation of Identified Pattern Candidates

B.1.8. Roadmap

Pattern Overview
ID V-02
Name ROADMAP

Alias -
Summary A ROADMAP for the team to focus on the next needed tasks

for the product and the continuous improvement of the
team itself.

Example

The development team argues how to manage their individual goals together with their
technical team-oriented goals.

Context

Development teams organize their goals in a ROADMAP to have a manual including long-
term and short-term goals.

Problem

• C-9: How to find the right balance between architectural improvements and business value?

• C-13: How to share common vision?

• C-22: How to balance short-term and long-term goals?

• C-39: How to establish a culture of continuous improvement?

Forces

• The managing of short-term and long-term goals is often not easy understandable
for developers.

• The coordination of technical as well as personal goals for all team members is chal-
lenging.

• Developers do not know how to communicate their individual goals.

101



B. Appendix

Solution

Development team, product owner and scrum master create a ROADMAP together, includ-
ing important short- and long-term goals to guarantee the fulfillment of these regarding
the development team and the technical product. Different layers can represent differ-
ent aspects for the product, roles or stakeholder. The time line is the foundation of the
ROADMAP (see Figure B.2).

Technology

Serial Development B

Team Development

Advance Development A

Advance Development B

Time frame Connection Milestone for maturity

Jan Feb Mar Apr May Jun Jul Aug Sept Oct

Figure B.2.: Example ROADMAP

Variants

As Phaal and Muller [50] explained in their architectural framework for roadmapping,
several types of roadmaps exist. Roadmaps can consist of more or less influence factors,
including roles as well as milestones.

Consequences

Benefits:

• Overview about long-term and short-term goals for the team.

• Overview including individual, technical, agile and more different types of mile-
stones.

• Simplifies reporting to the management: show ROADMAP and check growth.

Liabilities: None known.

See also

V-03: PROJECT PLAN

102



B.1. Documentation of Identified Pattern Candidates

B.1.9. Project Plan

Pattern Overview
ID V-03
Name PROJECT PLAN

Alias Calendar Overview
Summary During a planning meeting, the product owner presents a

project plan to justify his prioritization of the sprint back-
log and gives the development teams an overview about
relevant tasks beyond the current sprint.

Example

The developers request their product owner to share not only the direct upcoming tasks,
but also the long-term tasks.

Context

The organization of technical milestones and processes, done by the product owner, should
be visible and understandable for the development team.

Problem

• C-22: How to balance short-term and long-term goals?

• C-35: How to define clear and visible priorities?

Forces

• The product owner must summarize all dates in one table, in a structured manner,
that can lead to a loss of information.

Solution

The product owner brings a PROJECT PLAN as overview to a planning meeting, to inform
the development team about the deadlines for the next weeks and new appointments. He
marks the relevant dates for the next few sprints and explains why he prioritized which
task in the current sprint. The development team members can request, if something is not
clear and have access to the PROJECT PLAN the entire time. The calendar is organized as
a table with columns as days/weeks/months and rows as current projects/series (see Fig-
ure B.3). For a better understanding different types of deadlines can be colored (example
clustering for these milestones: model, implementation, test, documentation and more).

103



B. Appendix

Project A.0

MAR JUN JUL AUG SEP OCT NOV DEC JAN FEB

Project A.1

Project A.2

Project A.3

Project B.0

Project B.1

Project B.2

Project B.3

Milestone

Project B.4

Project duration

Figure B.3.: Exemplary project plan with milestones (e.g. technical maturity)

Variants

The calendar can include all useful information for the team. However, it is important
to limit the information to guarantee a clear overview. Calendar overviews can vary for
different teams.

Consequences

Benefits:

• Clear overview for the teams about the technical goals.

• Strengthens understanding of sprint backlog for the team.

Liabilities:

• Temporal expenditure of the plan leads to more work load for the product owner.

See also

V-02: ROADMAP

104



B.1. Documentation of Identified Pattern Candidates

B.1.10. Starfish

Pattern Overview
ID V-05
Name STARFISH

Alias -
Summary STARFISH is a retrospective technique to help team mem-

bers to share their thoughts in a retrospective meeting to
improve their teamwork.

Example

The scrum master recognizes, that some developers feel uncomfortable expressing them-
selves during retrospective meeting.

Context

Usually in a retrospective meeting, the team gets asked what went well, not so well, and
what could be improved. To provide more facets the starfish retrospective can be used.

Problem

• C-59: How to establish a common understanding of agile thinking and practices?

• C-137: How to escalate impediments?

Forces

• Team member sometimes feel not well sharing their (negative) thoughts about the
work within the team, while feeling uncomfortable addressing them.

Solution

A sea-star with five keywords is shown to the team members: Stop, Less, Keep, More, and
Start (see Figure B.4). Every team member writes down their thoughts regarding the five
categories at the starfish board and afterwards every point is discussed.

105



B. Appendix

Stop doing: These activities do not bring a value to the team and should be avoided.
Less of : Something that works, but the value is not high enough. So the effort is higher
than the output.
Keep doing: Something that works well and the value is recognized. Usually, good practices
the team members want to keep.
More of : Something which is already done, but could bring more value if done more often.
So the team should focus more on it.
Start doing: New ideas that could fit into the team work.

STOP DOING LESS OF

START DOING

MORE OF

KEEP DOING

Figure B.4.: Empty STARFISH structure

Consequences

Benefits:

• More options for teams during a retrospective meeting.

• Facilitate discussions about concerns for developers.

Liabilities:

• Some teams or single developers may not feel an additional value.

106



B.1. Documentation of Identified Pattern Candidates

B.1.11. Burndown Chart

Pattern Overview
ID V-06
Name BURNDOWN CHART

Alias -
Summary The BURNDOWN CHART gives an overview how much time

is left in a sprint and how much work is already done.

Example

A team fails frequently in solving their sprint tasks. The developers discuss possible rea-
sons.

Context

Some development teams do not solve all their sprint goals. To understand how much
work was done during a sprint in what time, the BURNDOWN CHART compares the real
tasks done with the ideal amount of tasks done.

Problem

• C-41: How to deal with unplanned requirements and risks?

• C-121: How to reduce sideline activities?

• C-130: How to avoid a growing pressure to single developers due to the growing responsibil-
ity for the team?

Forces

• The missing of sprint goals is not easy to explain.

Solution

The x-axis of the BURNDOWN CHART represents the time, while on the y-axis the open
tasks in the current sprint backlog are shown. Two lines show the difference between the
ideal amount of tasks remaining (hypnotized by a linear work distribution) and the actual
remaining tasks (see Figure B.5).

107



B. Appendix

During the retrospective meeting the development team uses the BURNDOWN CHART to
improve its own work style and to avoid too much work load in the end of a sprint. Espe-
cially sideline activities must be disclose to understand the amount of tasks done during
the time. The assignee of a task explains why a task was done in the beginning or the end
and shows concerns which came with the task. Also time which was spent for training
and the self-teaching of new competencies should be discussed.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

1 2 3 4 5 6 7 8 9 10

O
p

en
 T

as
ks

 in
 t

h
e 

Sp
ri

n
t 

B
ac

kl
o

g

Sprint Days

Sprint X

ideal tasks remaining actual tasks remaining

Figure B.5.: Example BURNDOWN CHART for sprint X

Variants

Development teams can also use BURNDOWN CHARTs from several sprints in the past to
compare their workload.

Burnup charts are the opposite and can be used the same way.

Consequences

Benefits:

• Transparency for team, product owner and scrum master about the distribution of
work load during one sprint.

Liabilities: None known.

108



Bibliography

[1] P. Abrahamsson, K. Conboy, and X. Wang. ‘Lots done, more to do’: the current
state of agile systems development research. European Journal of Information Systems,
18(4):281–284, 2009.

[2] M. F. Abrar, M. S. Khan, S. Ali, U. Ali, M. F. Majeed, A. Ali, B. Amin, and N. Rasheed.
Motivators for Large-Scale Agile Adoption From Management Perspective: A Sys-
tematic Literature Review. IEEE Access, 7:22660–22674, 2019.

[3] C. Alexander. The Timeless Way of Building. Oxford University Press, Oxford, United
Kingdom, 1979. Google-Books-ID: H6CE9hlbO8sC.

[4] S. W. Ambler and M. Lines. Disciplined agile delivery: A practitioner’s guide to agile
software delivery in the enterprise. IBM Press, Indianapolis, Indiana, United States of
America, 2012.

[5] E. Andreassen. Inter-team Coordination in Large-scale Agile Software Development. PhD
thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2015.

[6] M. A. Awad. A Comparison between Agile and Traditional Software Development Method-
ologies. PhD thesis, School of Computer Science and software Engineering, The Uni-
versity of Western Australia, Perth, Australia, 2005.

[7] S. Balaji. Waterfall vs. V-Model vs. Agile: A comperative study on SDLC. International
Journal of Information Technology and Business Management, 2(1):26–30, 2012.

[8] K. Beck. Implementation patterns (A Kent Beck signature book). Addison-Wesley Profes-
sional, Upper Saddle River, New Jersey, United States of America, 2008.

[9] K. Beck, J. Highsmith, B. Mike, A. Hunt, J. Ron, V. B. Arie, C. Ward, F. Martin,
G. James, C. Alistair, F. Martin, R. Jeffries, D. Thomas, R. C. Martin, K. Schwaber,
S. Mellor, and J. Sutherland. Manifesto for Agile Software Development, 2001.
https://agilemanifesto.org/ (accessed 2019-05-20).

[10] L. Briand, B. Basili, and W. Thomas. A Pattern Recognition Approach for Software
Engineering Data Analysis. IEEE Transaction on Software Engineering, 18(11):12, 1992.

[11] B. Bruegge and A. H. Dutoit. Object-Oriented Software Engineering. Using UML, Pat-
terns, and Java, volume 5. Prentice Hall, Upper Saddle River, New Jersey, United States
of America, 2009.

109



Bibliography

[12] S. Buckl, F. Matthes, A. W. Schneider, and C. M. Schweda. Pattern-based Design Re-
search in Enterprise Architecture Management. In E. Bayro-Corrochano and E. Han-
cock, editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications, volume 8827, pages 30–42. Springer International Publishing, Basel,
Switzerland, 2013.

[13] M. Cohn. Cultivate Communities of Practice. In Succeeding with Agile. Addison-
Wesley Professional, Boston, Massachusetts, United States of America, 1. edition,
2009.

[14] M. Cohn. Scaling the Product Owner. In Succeeding with Agile. Addison-Wesley Pro-
fessional, Boston, Massachusetts, United States of America, 2009.

[15] S. Comella-Dorda, S. Lohiya, and G. Speksnijder. An operating model for company-
wide agile development, 2016. https://www.mckinsey.com/business-functions/
digital-mckinsey/our-insights/an-operating-model-for-company-wide-agile-
development (accessed 2019-07-23).

[16] J. Coplien. Software Patterns. SIGS Books & Multimedia, New York, New York, United
States of America, 1996.

[17] J. Coplien and N. Harrison. Organizational Patterns of Agile Software Development. Pren-
tice Hall, Upper Saddle River, New Jersey, United States of America, 2004.

[18] K. Dikert, M. Paasivaara, and C. Lassenius. Challenges and success factors for large-
scale agile transformations: A systematic literature review. Journal of Systems and
Software, 119:87–108, 2016.

[19] T. Dingsøyr, T. E. Fægri, and J. Itkonen. What Is Large in Large-Scale? A Taxonomy
of Scale for Agile Software Development. In A. Jedlitschka, P. Kuvaja, M. Kuhrmann,
T. Männistö, J. Münch, and M. Raatikainen, editors, Product-Focused Software Process
Improvement, volume 8892, pages 273–276. Springer International Publishing, Basel,
Switzerland, 2014.

[20] T. Dingsøyr, M. Mikalsen, A. Solem, and K. Vestues. Learning in the Large - An Ex-
ploratory Study of Retrospectives in Large-Scale Agile Development. In J. Garbajosa,
X. Wang, and A. Aguiar, editors, Agile Processes in Software Engineering and Extreme
Programming, volume 314, pages 191–198. Springer International Publishing, Basel,
Switzerland, 2018.

[21] T. Dingsøyr and N. B. Moe. Research challenges in large-scale agile software devel-
opment. ACM SIGSOFT Software Engineering Notes, 38(5):38–40, 2013.

[22] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe. A decade of agile methodolo-
gies: Towards explaining agile software development. Journal of Systems and Software,
85(6):1213–1221, 2012.

110



Bibliography

[23] T. Dybå and T. Dingsøyr. Empirical studies of agile software development: A system-
atic review. Information and Software Technology, 50(9-10):833–859, 2008.

[24] L. Ekas and S. Will. Being Agile: Eleven Breakthrough Techniques to Keep You from "Wa-
terfall Backward". IBM Press, Indianapolis, Indiana, United States of America, 2014.

[25] A. Elssamadisy. Agile Adoption Patterns: A Roadmap to Organizational Success. Addison-
Wesley Professional, Boston, Massachusetts, United States of America, 2008.

[26] B. Flyvbjerg. Five Misunderstandings About Case-Study Research. Qualitative Inquiry,
12(2):219–245, 2006.

[27] C. Fuchs and T. Hess. Becoming Agile in the Digital Transformation: The Process of a
Large-Scale Agile Transformation. In Thirty Ninth International Conference on Informa-
tion Systems, volume 39, page 18, San Francisco, California, United States of America,
2018. Association for Information Systems.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns : Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional, Boston, Mas-
sachusetts, United States of America, 1995.

[29] R. K. Greenleaf. Servant Leadership: A Journey Into the Nature of Legitimate Power
and Greatness. Paulist Press, Mahwah, New Jersey, United States of America, 2002.
Google-Books-ID: AfjUgMJlDK4C.

[30] N.-M. Harders. Identifying recurring Challenges and Best Practices of Agile Coaches
and Scrum Masters and Documenting them as a part of a Large-Scale Agile Devel-
opment Pattern Language. Master’s thesis, Technical University Munich, Munich,
Germany, 2019.

[31] N. Harrison. Advanced Pattern Writing. In Proceedings of the 8th European Conference
on Pattern Languages of Programms EuroPLoP ’03, Irsee, Germany, 2003.

[32] J. Heidenberg, M. Matinlassi, M. Pikkarainen, P. Hirkman, and J. Partanen. Systematic
piloting of agile methods in the large: two cases in embedded systems development.
In International Conference on Product Focused Software Process Improvement, pages 47–
61, Basel, Switzerland, 2010. Springer International Publishing.

[33] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science in Information Systems
Research. MIS Quarterly, 28(1):76–106, 2004.

[34] J. A. Highsmith and J. Highsmith. Agile Software Development Ecosystems. Addison-
Wesley Professional, Boston, Massachusetts, United States of America, 2002.

[35] M. Kalenda, P. Hyna, and B. Rossi. Scaling agile in large organizations: Practices,
challenges, and success factors. Journal of Software: Evolution and Process, 2018.

111



Bibliography

[36] D. Karlstrom and P. Runeson. Combining Agile Methods with Stage-Gate Project
Management. IEEE Software, 22(3):43–49, 2005.

[37] K. Kuusinen, P. Gregory, H. Sharp, L. Barroca, K. Taylor, and L. Wood. Knowledge
Sharing in a Large Agile Organisation: A Survey Study. Agile processes in software
engineering and extreme programming, pages 135–150, 2017.

[38] C. Larman and B. Vodde. Large-scale scrum: More with LeSS. Addison-Wesley Profes-
sional, Boston, Massachusetts, United States of America, 2016.

[39] D. Leffingwell. Scaled Agile Framework – SAFe for Lean Enterprises, 2019.
https://www.scaledagileframework.com/ (accessed 2019-07-22).

[40] T. C. Lethbridge, S. E. Sim, and J. Singer. Studying Software Engineers: Data Collec-
tion Techniques for Software Field Studies. Empirical Software Engineering, 10(3):311–
341, 2005.

[41] H. Merisalo-Rantanen, T. Tuunanen, and M. Rossi. Is Extreme Programming Just Old
Wine in New Bottles: A Comparison of Two Cases. Journal of Database Management,
16(4):41–61, 2005.

[42] G. Meszaros and J. Doble. A Pattern Language for Pattern Writing. Proceedings of
International Conference on Pattern languages of program design, 3:529 – 574, 1997.

[43] N. B. Moe, T. Dingsøyr, and K. Rolland. To schedule or not to schedule? An in-
vestigation of meetings as an inter-team coordination mechanism in large-scale agile
software development. IJISPM - International Journal of Information Systems and Project
Management, 6(3):45–59, 2018.

[44] N. B. Moe, D. Šmite, A. Šāblis, A.-L. Börjesson, and P. Andréasson. Networking in a
large-scale distributed agile project. In Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement - ESEM ’14, pages 1–8,
Torino, Italy, 2014. ACM Press.

[45] I. F. Oskam. T-shaped engineers for interdisciplinary innovation: an attractive per-
spective for young people as well as a must for innovative organisations. In 37th
Annual Conference - Attracting students in Engineering, page 11, 2009.

[46] M. Paasivaara. Adopting SAFe to Scale Agile in a Globally Distributed Organization.
In 2017 IEEE 12th International Conference on Global Software Engineering (ICGSE), pages
36–40, Buenos Aires, Argentina, 2017. IEEE.

[47] M. Paasivaara and C. Lassenius. Communities of practice in a large distributed agile
software development organization – Case Ericsson. Information and Software Technol-
ogy, 56(12):1556–1577, 2014.

112



Bibliography

[48] M. Paasivaara and C. Lassenius. Scaling Scrum in a Large Globally Distributed Orga-
nization: A Case Study. In 2016 IEEE 11th International Conference on Global Software
Engineering (ICGSE), pages 74–83, Orange County, California, USA, 2016. IEEE.

[49] G. Papadopoulos. Moving from Traditional to Agile Software Development Method-
ologies Also on Large, Distributed Projects. Procedia - Social and Behavioral Sciences,
175:455–463, 2015.

[50] R. Phaal and G. Muller. Towards Visual Strategy: An Architectural Framework for
Roadmapping. In PICMET ’07 - 2007 Portland International Conference on Manage-
ment of Engineering & Technology, pages 1584–1592, Portland, Oregon, United States
of America, 2007. IEEE.

[51] R. Pichler and S. Roock. Agile Entwicklungspraktiken mit Scrum. dpunkt. verlag, Hei-
delberg, Germany, 2011.

[52] D. Riehle. Design pattern density defined. SAP Research, page 12, 2009.

[53] C. Robson. Real world research: a resource for social scientists and practitioner-researchers.
Blackwell Publishers, Oxford, United Kingdom, 2nd ed edition, 2002.

[54] K. Rolland, V. Mikkelsen, and A. Næss. Tailoring Agile in the Large: Experience and
Reflections from a Large-Scale Agile Software Development Project. Agile processes, in
software engineering, and extreme programming, pages 244–251, 2016.

[55] P. Runeson and M. Höst. Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, 14(2):131–164, 2009.

[56] Scaled Agile Inc. Product Owner – Scaled Agile Framework, 2019.
https://www.scaledagileframework.com/product-owner/ (accessed 2019-07-23).

[57] A. Scheerer. Coordination in Large-Scale Agile Software Development. Progress in IS.
Springer International Publishing, Basel, Switzerland, 2017.

[58] A. Scheerer, T. Hildenbrand, and T. Kude. Coordination in Large-Scale Agile Software
Development: A Multiteam Systems Perspective. In 2014 47th Hawaii International
Conference on System Sciences, pages 4780–4788, 2014.

[59] K. Schwaber. Online Nexus Guide | Scrum.org, 2019. https://www.scrum.org/
index.php/resources/online-nexus-guide (accessed 2019-06-21).

[60] K. Schwaber and M. Beedle. Agile software development with Scrum. Prentice Hall,
Upper Saddle River, New Jersey, United States of America, 1 edition, 2002.

[61] Scrum.org. What is Scrum?, 2019. https://www.scrum.org/resources/what-is-scrum
(accessed 2019-06-21).

113



Bibliography

[62] Scrum@Scale LLC. Scrum at Scale, 2019. https://www.scrumatscale.com/scrum-at-
scale-guide/ (accessed 2019-06-21).

[63] H. Svensson and M. Host. Introducing an Agile Process in a Software Maintenance
and Evolution Organization. In Ninth European Conference on Software Maintenance and
Reengineering, pages 256–264, Manchester, United Kingdom, 2005. IEEE.

[64] The LeSS Company B.V. Product Owner - Large Scale Scrum (LeSS), 2019.
https://less.works/less/framework/product-owner.html (accessed 2019-07-23).

[65] Ö. Uludağ. Large-Scale Agile Development Pattern Graph, 2019.
https://scaling-agile-hub.sebis.in.tum.de/#/patterns (accessed 2019-07-11).

[66] Ö. Uludağ, N.-M. Harders, and F. Matthes. Documenting Recurring Concerns and
Patterns in Large-Scale Agile Development. Association for Computing Machinery,
1(1):15, 2019.

[67] Ö. Uludağ, M. Kleehaus, C. Caprano, and F. Matthes. Identifying and Structuring
Challenges in Large-Scale Agile Development Based on a Structured Literature Re-
view. In 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference
(EDOC), pages 191–197, Stockholm, Sweden, 2018. IEEE.

[68] Ö. Uludağ, M. Kleehaus, N. Dreymann, C. Kabelin, and F. Matthes. Investigating the
Adoption and Application of Large Scale Scrum at a German Automotive Manufac-
turer. In Proceedings of the 14th International Conference on Global Software Engineering,
Montreal, Quebec, Canada, 2019. IEEE.

[69] Ö. Uludağ, M. Kleehaus, X. Xu, and F. Matthes. Investigating the Role of Architects in
Scaling Agile Frameworks. In 2017 IEEE 21st International Enterprise Distributed Object
Computing Conference (EDOC), pages 123–132, Quebec City, Quebec, Canada, 2017.

[70] Ö. Uludağ and F. Matthes. Identifying and Documenting Recurring Concerns and
Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Develop-
ment. HILLSIDE Proc. of Conf. on Pattern Lang. of Prog. 26, page 22, 2019.

[71] Ö. Uludağ, N. Reiter, and F. Matthes. Improving the Collaboration Between Enter-
prise Architects and Agile Teams - A Multiple-Case Study. Architecting the Digital
Transformation, Springer-Verlag, 2020.

[72] T. Wellhausen and A. Fiesser. How to write a pattern?: a rough guide for first-time
pattern authors. In Proceedings of the 16th European Conference on Pattern Languages of
Programs - EuroPLoP ’11, pages 1–9, Irsee, Germany, 2011. ACM Press.

[73] E. Wenger, R. A. McDermott, and W. Snyder. Cultivating Communities of Practice: A
Guide to Managing Knowledge. Harvard Business School Press, Boston, Massachusetts,
United States of America, 2002. Google-Books-ID: m1xZuNq9RygC.

114



Bibliography

[74] R. J. Winter. Agile Software Development: Principles, Patterns, and Practices: Robert
C. Martin with contributions by James W. Newkirk and Robert S. Koss. Performance
Improvement, 53(4):43–46, 2014.

[75] D. A. Wintersteiger. Scrum: Schnelleinstieg. entwickler.press, Frankfurt am Main, Ger-
many, 4. edition, 2015.

115


	Abstract
	Outline of the Thesis
	Introduction
	Motivation
	Research Objectives
	Research Approach

	Foundations
	Patterns
	Agile Development
	Principles and Values
	Scrum

	Large-Scale Agile Development
	Definition
	Concerns in Large-Scaled Agile Development
	Success Factors in Large-Scaled Agile Development
	Scaling Agile Frameworks

	Large-Scale Agile Transformation

	Related Work
	Case Study
	Case Study Design
	Shadowing
	Feedback Talks
	Interviews
	Provided Data

	Case Description

	Observing and Identifying Recurring Concerns and Good Practices
	Recurring Concerns
	Good Practices
	Create T-Shaped People
	Community of Practice
	Empowered Community of Practice
	Travelling
	Synchronized Calendar
	Don't Combine Developers from Different Organizational Units in One Development Team


	Discussion
	Key Findings
	Limitations

	Conclusion
	Summary
	Future Work

	Appendix
	Interview Questionnaire
	General Questions
	Questionnaire for Manager
	Questionnaire for Product Owner, Scrum Master and Developer

	Results

	Appendix
	Documentation of Identified Pattern Candidates
	Backlog Grooming
	Piloting
	Share the Change
	Come to Our Demos
	Shadowing
	Share a Mailbox
	Radar Chart
	Roadmap
	Project Plan
	Starfish
	Burndown Chart


	Bibliography

